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Preface

It is hard to pinpoint numbers, but as of 2025 we estimate that less
than 500 people globally are actively dedicated to the direct objec-
tives of brain emulation. Even when considering those in overlapping
areas of neuroscience, hardware, and software development, the total
number likely still does not surpass 5,000 individuals worldwide. Such
a small community means that every individual contributor's presence
or absence can profoundly shape the field's trajectory. We hope this
report will serve to attract new talent to this emerging and interdisci-
plinary endeavor.

This report offers a comprehensive overview of the field of brain em-
ulation, detailing its current state, recent scientific and technological
advances, and future challenges. It is intended for researchers, funders,
and technical professionals seeking an understanding of this highly
interdisciplinary domain.

It is important to note that this report does not claim exhaustive cover-
age. Our analysis focuses on five selected model organisms, offers only
a glimpse into the vast topics of neuromodulation and neuroplasticity,
and deliberately omits detailed discussions of transcriptomics or pro-
teomics. As a primarily technical document, it also does not examine
ethical and social considerations surrounding brain emulations, nor
does it address questions pertaining to consciousness or personality
preservation.

Future editions might aim to update the chapters below in light of sci-
entific progress, providing a continuously evolving overview for inter-
ested audiences. All data referenced in this report is publicly available
for further research and development (see Data repositories).

Niccold Zanichelli, Maximilian Schons, Isaak Freeman, Philip Shiu, and
Anton Arkhipov

November 2025
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Executive Summary

A brain emulation is a computational model that aims to match a brain’s biological com-
ponents and internal causal dynamics at a chosen level of biophysical detail. Achieving
this requires three core capabilities: 1) recording brain activity, 2) reconstructing brain
wiring, and 3) digitally modelling brains with respective data. As our report shows, all
three capabilities have advanced substantially over the past two decades - to the point
where neuroscience across all three domains is increasingly approaching the scale of
sub-million neuron organisms like zebrafish larvae and fruit flies:

Recording brain activity (Neural Dynamics): Electrode based neural activity recordings
scaled from a few dozen to several thousand simultaneously recorded neurons. Func-
tional optical imaging transitioned from nascent technology to large-scale recordings:
calcium imaging, where genetically encoded indicators report correlates of neural activity,
now captures approximately one million cortical neurons in mice (though without resolv-
ing individual spikes), while voltage imaging resolves individual spikes in tens of thou-
sands of neurons in larval zebrafish. Taking neuron count and sampling rate into account,
these improvements represent about a two-order-of-magnitude increase in effective data
bandwidth of neural recordings in the past two decades. Additionally, causal perturbation
methods like optogenetics now make it feasible to propose systematic reverse-engineer-
ing of neuron-level input-output relationships across entire small nervous systems.. Yet,
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neural activity recording today still faces significant trade-offs across spatial coverage,
temporal resolution, recording duration, invasiveness, signal quality, and behavior rep-
ertoire. Even more challenging is recording of modulatory molecules like hormones and
neuropeptides. Defining “whole-brain” as capturing more than 95 percent of neurons
across 95 percent of brain volume simultaneously, no experiment to date has delivered
that scale with single-neuron, single-spike resolution in any organism during any behav-
ior. It seems plausible that this barrier will be overcome for sub-million neuron organisms
in the upcoming years.

Reconstructing brain wiring (Connectomics): In parallel, reconstructing wiring dia-
grams has moved past multiple C. elegans worm brain mappings to produce two fully
reconstructed adult fruit fly brain connectomes - an increase in neuron count by almost
three orders-of-magnitude. Several additional scans in other organisms such as larval ze-
brafish have been acquired, and are expected to complete processing in the near future.
Dataset sizes now increasingly reach petabyte scale, which challenges storage/backup
infrastructure not only with costs, but also the ability to share and collaborate. Acquisition
progress was enabled by a mix of faster electron microscopy, automated tissue handling
pipelines and algorithmic image processing / neuron tracing. All contributed to push cost
per reconstructed neuron from an estimated $16,500 in the original C. elegans connec-
tome to roughly $100 in recent larval zebrafish projects. Proofreading, the manual process
of fixing errors from computerized neuron tracing, remains the most time- and cost-con-
suming factor. This holds particularly for mammalian neurons with large size and complex
morphologies. Experts are optimistic that machine-learning will eventually overcome this
bottleneck and reduce costs further. As of now, all reconstruction efforts are basically
limited to contour tracing to reconstruct wiring diagrams, but lack molecular annotations
of key proteins, limiting their direct utility for functional interpretation and computational
modeling. Expansion microscopy offers a promising complementary path that enables
molecular annotation, including protein barcoding for self-proofreading. Further, many ex-
perts are optimistic it may also scale more cost-effectively to mammalian connectomics.

Modelling brains faithfully (Computational Neuroscience): The capacity to simulate
neural systems has also advanced, enabled by richer datasets, more powerful software
and hardware. In C. elegans, connectome-constrained and embodied models now repro-
duce specific behaviors, while in the fruit fly, whole-brain models recapitulate known cir-
cuit dynamics. At the other end of the spectrum, feasibility studies on large GPU clusters
have demonstrated simulations approaching human-brain scale, albeit with simplified
biophysical assumptions. On the hardware side, the field has shifted from specialized
CPU supercomputers toward more accessible GPU accelerators. For mammalian-scale
simulations, the primary hardware bottlenecks are now hardware memory capacity and
interconnect bandwidth, not raw processing power. On the software side, improvements
come from automatically differentiable data-driven model parameter fitting, efficient sim-
ulation methods and the development of more rigorous evaluation methods. Still, many
biological mechanisms like neuromodulation are still largely omitted. A more fundamental
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limitation is that models remain severely data-constrained. Experimental data are scarce
in general, complementary structural and functional datasets from the same individual
are rare, and where they exist, they lack sufficient detail. Moreover, passive recordings
alone struggle to uniquely specify model parameters, highlighting the need for causal
perturbation data.

Conclusion In summary, the past two decades delivered meaningfully improved methods
and a new era of scale for data acquisition. Two challenges will shape the next phase of
research: first, determining which biological features (from gap junctions to glial cells and
neuromodulators) are necessary to produce faithful brain emulation models. Empirically
answering such questions calls for more comprehensive evaluation criteria to include
neural activity prediction, embodied behaviors and responses to controlled perturbations.
Second, the widening gap between our ability to reconstruct ever-larger connectomes
and our much more limited capacity to record neural activity across them for the fore-
seeable future. This discrepancy likely necessitates the development of methods to infer
functional properties of neurons and synapses primarily from structural and molecular
data. For both challenges, tractable organisms where whole-brain recording is feasible
present a compelling target. Here, comprehensive functional, structural, and molecular
datasets are attainable at scale, making it possible to empirically determine which biolog-
ical details are necessary for a faithful emulation. Furthermore, the cost-efficient collec-
tion of aligned structural and neural activity datasets from multiple individuals provides
the essential ground truth for developing and rigorously evaluating methods to predict
functional properties from structure alone. The evidence this generates, defining what is
needed for emulation and validating methods that infer function from structure, will be
critical to guide and justify the large-scale investments required for mammalian brain
projects, which will also require parallel progress in cost-effective connectomics. The
deeply integrated, end-to-end nature of this research calls for dedicated organizational
models to complement the vital contributions of existing labs at universities and research
campuses.

(44

A brain emulation is a computational model that
aims to match a brain’s biological components
and internal causal dynamics at a chosen level of
biophysical detail.

29
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Technical Overview

This Technical Overview gives a compact, data focused map of the rest of the report.
While the Executive Summary presents the main conclusions at a high level, this section
summarizes, for each major technical chapter, the key quantitative facts, scaling relation-
ships, and bottlenecks that define the current state of brain emulation. Readers who want
a single, technically informed snapshot of where the field stands, before diving into the
detailed chapters, should be able to find it here.

Organism Scale Overview

The magnitude of the emulation challenge scales non-linearly with organism complexity.
The following table summarizes the physical dimensions and component counts for the
five primary model organisms discussed in this report.

/:\:I838 Physical dimensions and component counts for the five model organisms

Organism Developmental Approx. Brain Neuron Synapse Count
Stage Volume Count
~5,600 (chemical)
C. elegans Adult 0.002 mm? ~300

~600 (gap junctions)

Larval ~b-7 days post

Zebrafish fertilization (dpf) 0.08 mm?® ~1x10° (Not yet fully quantified)

Drosophila Adult 0.04 mm? ~14x10° ~5%107

w0 L e
Human Adult 1288888 ;nm3 ~8,6 X101 (not quantified)
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Recording brain activity -
Neural dynamics

Despite impressive progress in neuron recording capabilities, neuroscience has not yet
achieved whole-brain recording (= 95% of neurons and brain volume) at single-neuron
resolution in any organism. The closest achievements include larval zebrafish with ap-
proximately 80% brain coverage and C. elegans with roughly 50% of nervous system neu-
rons recorded at single-cell resolution. Even these figures, however, come with substan-
tial limitations: temporal resolution is typically well below neuronal firing rates (often 1-30
Hz for calcium imaging), recording durations remain short (minutes to hours), and the
need for head-fixation severely constrains behavior repertoires. In larger organisms like
mice, recordings focus on cortical regions or specific brain areas rather than whole-brain
coverage, while human recordings are either non-invasive and thus not single-neuron
resolution or restricted to clinical settings and sample from extremely localized volumes
of hundreds of thousands of neurons.

an aggregation of all studies available for this report, visualizes these: smaller
organisms have more data available and are more likely to have significant data without
fixation. Also, recording duration in all organisms is at least 2-3 orders of magnitude away
from the entire life span. Finally, recording modalities with strong performance in one
dimension will likely have poor performance in another.

Current single-cell resolution neural activity recording methods fall into two broad
categories, each with distinct trade-offs. Optical fluorescence microscopy approaches,
primarily calcium imaging, excel at capturing activity from large populations of neurons
simultaneously (up to approximately one million in mouse cortex or tens of thousands in
zebrafish and Drosophila) but suffer from slow temporal resolution that misses individual
spikes in many neuron types. Electrophysiological methods like Neuropixels offer milli-
second-precision spike detection but sample sparsely, typically recording from hundreds
to a few thousand neurons along electrode trajectories. Voltage imaging with genetically
encoded voltage indicators is emerging as a potential bridge between these extremes,
with recent demonstrations approaching tens of thousands of neurons at spike-relevant
speeds in larval zebrafish, though this technology remains in active development and
recording durations are limited.

A fundamental challenge is that these methods primarily track electrical activity. Monitor-
ing the broader chemical context (neurotransmitters, neuropeptides, and other signaling
molecules that critically shape circuit function) remains difficult. While genetically en-
coded neurotransmitter indicators have been developed for select molecules, they cover
only a small fraction of the hundreds of neuromodulatory signals known to exist in these
brains.
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Obtaining comprehensive, single-neuron resolution recordings of whole mammalian
brains faces severe physical constraints, and as a result will likely remain extremely
challenging for the foreseeable future (see [FIGERA). Single-cell recording capabilities are
currently at about 1 million cells at 2 Hz (calcium

imaging), equivalent to 2x10° bits per second. In the 1980s about 5 cells could be sampled
at 200 Hz (electrophysiology), equivalent to 10° bits per second. For context, recording

a mouse brain at single-neuron resolution recordings at 200 Hz (sufficient to resolve
individual spikes) would generate about 1.4 x 10° bits/s, while doing the same for a whole
human brain would generate about 1.7 x 10" bits/s.

The path forward requires progress on several fronts. First, maturing voltage imaging to
achieve spike-resolution whole-brain recordings in smaller organisms remains a primary
goal, with extending recording durations being a particular challenge. Second, expanding
behavioral freedom requires lighter microscopes, less invasive surgical preparations, and
creative experimental setups that permit more natural movement patterns. Third, greater
emphasis on causal rather than merely correlational data is needed to reduce the oth-
erwise prohibitive data requirements. This means integrating large-scale recording with
systematic perturbations experiments of neural activity, most likely using optogenetic
approaches. Such experiments then measure the effectome, a quantitative map of causal
influence between neurons and would ground computational models in measured func-
tional interactions rather than inferred ones. Finally, developing molecular sensors for the
broader range of neurotransmitters and neuropeptides present in these organisms will
add the chemical dimension necessary to understand how circuit dynamics emerge.

(44

AAA brain emulation is a computational model
that aims to match a brain’s biological components
and internal causal dynamics at a chosen level of
biophysical detail.

29
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I3  Heatmap plot of significant brain recording publications across different
organisms.

The figure plots the relative distance from the respective organism’s maximum value in a set of recording dimensions
for a given publication. All papers referenced in the report and other noteworthy papers are listed. (data)
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Executive Materials

IEIMIF  Estimated instantaneous information rate of neural recordings over time.

Adaptation of Urai et al, 2022. This metric is defined as the number of simultaneously record-
ed neurons multiplied by their effective temporal resolution, capped at 200 Hz. This capped
rate serves as a proxy for the instantaneous data bandwidth and provides a more consistent
basis for comparison across different recording modalities. The 200 Hz cap balances the
high-frequency capabilities of electrophysiology with the typical temporal dynamics of
calcium imaging methods. Data points distinguish between Imaging (e.g,, calcium imaging,
light-sheet; blue circles) and Ephys (extracellular electrophysiology; red triangles), illus-
trating technological advancements. While this plot focuses on the simultaneous recording

Information Rate Over Time

capacity, the total information acquired in an experiment also critically depends on the
recording duration, a factor that varies widely and could be incorporated into future editions
of this report. Horizontal dashed lines indicate theoretical maximum information rates for
selected nervous systems (C. elegans body, fly brain, mouse cortex, whole mouse brain),
calculated by multiplying their respective total neuron counts by the 200 Hz cap. These lines
offer benchmarks for current experimental capabilities against the scale of these neural
systems. (data)
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Reconstructing brain wiring -
Connectomics

Complete connectomes at synaptic resolution currently exist only for small organisms. C.
elegans has multiple whole-nervous-system reconstructions from individual specimens,
with approximately ten datasets available. Adult Drosophila has fully proofread connec-
tomes for both the male central nervous system and the female brain, with another fe-
male CNS reconstruction in progress. Larval zebrafish has had its whole brain imaged at
synaptic resolution multiple times, with reconstruction and proofreading efforts ongoing.
For larger organisms, progress remains at the proof-of-concept stage. In mice, the largest
densely reconstructed volume is a cubic millimeter of visual cortex, containing approxi-
mately 120,000 neurons and 523 million automatically detected synapses, with ongoing
proofreading of a small fraction of neurons. Current efforts funded by the NIH target 10
mm? volumes, representing roughly 2-3% of the mouse brain. In humans, the largest syn-
aptic-resolution volume is approximately 1 mm? of the temporal cortex (0.00007% of the
whole brain), with only 104 neurons fully proofread from approximately 16,000 identified
cells. TaBLE 2 lists the different connectomes for the organisms discussed in our report.

Electron microscopy provides the imaging foundation for nearly all existing synaptic-res-
olution connectomes. Over past decades technical advances include multi-beam systems
that parallelize acquisition, achieving higher throughput for large volumes. However, EM
workflows remain slow for mammalian-scale projects and provide minimal molecular
information. Expansion microscopy is advancing rapidly on two fronts: high-expansion
protocols have demonstrated effective lateral resolutions of approximately 20 nm, suf-
ficient for dense reconstruction in mouse cortex while enabling protein-specific labels.
X-ray microscopy offers another path to rapid, large-volume imaging. Synchrotron-based
efforts have demonstrated cellular-resolution imaging of whole brains, and separate work
has achieved the sub-40 nm resolution capable of resolving individual synapses under
specialized laboratory conditions.

shows how the average costs per quality-controlled reconstructed neuron fell
from ~$16,500 for C. elegans in the 1980s, to ~$214 for the Drosophila and ~$100 for
zebrafish larvae as of 2025 . Improved neuron tracing and new imaging methods like ex-
pansion microscopy could continue this trend. Larger animals, however, often have larger
and more complex neurons. For rodent neurons the average price is often still about
$1,000 per neuron. To reconstruct a connectome at 1 billion dollars, prices need to fall to
$10/neuron for the mouse and $0.01/neuron for humans. As part of this report we created
a detailed model for connectomics cost-estimates interested users can consult (see data
repository). Given the numerous variables involved—resolution requirements, imaging
modalities, storage setups, and methodological trade-offs—we plottet data only from past

or ongoing projects for IR}
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Irrespective of imaging modality, synaptic-resolution connectomics produces vast data-
sets that pose significant storage and analysis challenges. A mouse brain at 10 nm isotro-
pic resolution would require without further lossless or lossy compression approximately
1 exabyte of storage, while a human brain would require 1-1.4 zettabytes. These volumes
necessitate specialized infrastructure and advanced, Al-based compression algorithms,
with recent methods demonstrating storage reductions of up to 128x. Automated recon-
struction has been a second major bottleneck. The latest Al-driven methods have im-
proved key error rates by an order of magnitude or more compared to previous approach-
es, dramatically reducing the need for manual correction. This brings proofreading costs
down to a level comparable with image acquisition, making exhaustive reconstruction of
cubic-millimeter-scale mammalian brain volumes economically feasible. Expansion mi-
croscopy has also demonstrated proof-of-concept molecular barcoding techniques that
enable automated matching of neuron fragments across spatial gaps, offering an alterna-
tive route to reducing manual proofreading requirements.

The path forward for connectomics requires advances on multiple fronts. Continued im-
provement in Al for automated segmentation, proofreading, intelligent imaging strategies,
and data compression is essential for scaling to mammalian brains. Expansion micros-
copy holds significant promise for scalable, molecularly-annotated connectomics by
integrating its demonstrated capabilities: high-throughput imaging, dense reconstruction
with high expansion factors, and molecular barcoding for automated proofreading. These
technical pursuits are particularly important because ex vivo structural mapping benefits
from a key advantage over in vivo functional imaging: it is not constrained by the same
physical limitations. Tissue can be chemically fixed, sectioned, expanded, and imaged
over arbitrarily long timescales without the constraints imposed by maintaining a living
organism. This makes mammalian-scale connectomics technically challenging but not
fundamentally limited in the way that whole-brain functional imaging appears to be.

(44

AAA brain emulation is a computational model
that aims to match a brain’s biological components
and internal causal dynamics at a chosen level of
biophysical detail.
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Executive Materials =

i/ \:IiFR Synaptic resolution Electron microscopy connectome reconstructions

Complete overview of connectome reconstructions in the four model organisms. Additionally, multiple expansion and x-ray experiments are ongoing. Blue: scanned. Red: Scanned and traced.

“Original” composite C. elegans con-
nectome. (EM). Synaptic resolution.
(White et al, 1986)

C. elegans: 10 complete connectomes,
one composite, including both sexes
and five different developmental
stages (EM).

(Varshney et al., 2011, Cook et al,, 2019,
Brittin et al,, 2020, Witvliet et al., 2021)

Zebrafish: 10% of the spinal cord in an
individual before sex differentiation.
Brainstem (Vishwanathan et al,,
2024) and spinal cord have also been
reconstructed (Svara et al., 2018)

Zebrafish: One whole brain in an
individual before sex differentiation.
(Svara et al,, 2022)

Additional efforts are ongoing
(Lueckmann et al,, 2025). Note: during
the editing process two additional
projects were published:

Drosophila: One half-brain female individual. Synaptic
resolution via EM

(Scheffer et al 2020)

Drosophila: Ventral nerve cord in female (Azevedo et al,,
2024) and male individuals (Takemura et al,, 2024)

Drosophila: One whole brain and one half of the central
brain - in different female individuals (Zheng et al, 2018,
Dorkenwald et al,, 2024 and Schlegel et al., 2024).

The entire male brain and nerve cord (Berg et al,, 2025)

Additionally, there is a complete connectome of the
Drosophila larvae (Winding et al, 2023)

Mouse: Tmm3 male mouse brain
cortex (0.2% total brain volume). Synaptic

resolution.
(Microns, 2025)

1 mm?® female human brain cortex (not proofread,
0.000001% total brain volume). (Shapson-Coe et al, 2024)
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IR Cost per quality-controlled reconstructed Neuron (inflation adjusted to 2025).

This plot uses best estimates on the end-to-end reconstruction costs (sample preparation & slicing, scanning,
reconstruction & proofreading) for the three major connectomics initiatives of the past 40 years, C. elegans, Fruitfly,
Zebrafish, and the estimates from experts for current costs. (plot, data see data repository)

Cost per neuron over time
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Modelling brains faithfully -
Computational Neuroscience

Meaningful progress toward whole-brain emulation is currently confined to small organ-
isms where comprehensive datasets are becoming available. In C. elegans, multi-scale,
closed-loop simulations now reproduce basic behaviors by integrating neural dynamics,
body mechanics, and environmental interaction. For Drosophila, the adult connectome
has enabled models spanning the entire brain, successfully predicting neural responses
and circuit functions for behaviors like feeding and grooming. Larval zebrafish modeling,
while often circuit-specific, is driven by readily available whole-brain functional data, with
proof-of-concept connectome-constrained simulations demonstrating accurate predic-
tion of oculomotor integration dynamics, and embodied models replicating optomotor
responses. With a full connectome for this organism expected soon, the field is poised for
more integrated structural-functional models. In larger organisms like mice and humans,
however, comprehensive emulation remains at the proof-of-concept stage. These efforts
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demonstrate building biophysically detailed cortical circuits by algorithmically inferring
connectivity, or running human-scale simulations on supercomputers as feasibility tests.

As part of this report, simulation attempts for different organisms were rated on the fol-
lowing 0-3 point scale across 10 dimensions. No simulation attempt scores highly across
all dimensions, and some cannot be found in any simulation attempt at all. shows
a respective heatmap plot across the dimensions we introduce in detail in the Definition
chapter.

Two fundamental challenges constrain progress at larger scales. First and foremost is
data scarcity: fitting the vast number of parameters required for accurate neural mod-
els (a single biophysically detailed neuron can require tens of thousands of parameters)
requires dense, high-quality functional and structural datasets. While large neural data
repositories exist, lack of standardization and variable data quality often limit their us-
ability for parameter fitting. Moreover, in larger organisms, comprehensive whole-brain
recordings remain infeasible, further compounding this challenge.

Second, computational demands are substantial. Even with simplified neuron and syn-
apse models, real-time mammalian-scale simulation strains available resources. Assum-
ing approximately 10 KB memory and 1 MFLOP/s per neuron with synapses, a mouse
brain simulation requires 1-2 TB memory and 5-10 PFLOP/s; a human brain simulation
requires 1-3 PB memory and approximately 10 EFLOP/s. For comparison, an H100 GPU
(80 GB, 67 TFLOP/s) can store roughly 8 million neurons before hitting memory limits;
devices in the 1980s (~0.5 GB, 2 GFLOP/s) could handle only about 2,000 neurons (see |
FELER). While hardware will continue to improve, it cannot compensate for insufficient
training data; data constraints set a hard upper bound on model quality.

The path forward involves three coordinated strategic objectives. First, achieve high-fi-
delity emulations in small, tractable organisms by fully integrating complete connectomes
with rich, whole-brain functional and causal perturbation datasets. Activity prediction
benchmarks in C. elegans and larval zebrafish already demonstrate that model per-
formance improves with increased data availability, suggesting a productive feedback
loop, as benchmark results can guide experimentalists on what types of data (passive
recordings, targeted perturbations, molecular annotations) and in what quantities would
most improve computational models. Second, within these same systems, develop and
validate generative models that can compensate for the lack of whole-brain activity data,
for instance by inferring functional parameters from anatomical data alone, mapping
molecularly-annotated structure to function. For mammalian nervous systems, such
structure-to-function mappings will likely be indispensable. Third, in parallel, optimize
simulation software (leveraging modern accelerators and event-driven paradigms) and
develop specialized hardware to reduce computational and memory requirements for
mammalian-scale emulations.
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XX Heatmap plot of computational brain models across different organisms.

The figure plots the score of a brain model across various dimensions. All papers referenced in the report and other
noteworthy papers are listed. (data)
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I3  Computational demands across organisms

This figure illustrates the computational demands across compute and storage for various organisms and compares
current state-of-the-art hardware against it. It uses point neurons and 5-compartment neurons estimates. For mice,
a neuron is between 0.3 to 4 million FLOP/s and 15-30KB. This totals around 0.1 PetaFLOP/s and 1-2 TB of memory.
Single GPUs like the Blackwell Ultra can calculate this fast, but as of today, they max out at 288 GB memory. Intercon-
nect speeds depend on many setup variables and accurate connectomes, which is why the figure does not include
estimates.(data)
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Introduction

In 2008, seventeen years prior to the publication of this report, Sandberg and Bostrom
laid out an ambitious vision for whole-brain emulation, a concept then largely theoretical.
The intervening years have seen substantial scientific and technological developments
that now justify a careful reexamination of progress toward this objective.

The motivations for undertaking this complex, multi-stage process are diverse. For many
scientists, the payoff is basic insight: a faithful model would provide unprecedented
understanding of how perception, memory, and decision-making emerge from neural cir-
cuits under controlled conditions. Clinicians see a rapid-testing platform for neurological
and psychiatric interventions, cutting the time and cost of in vivo trials. Others anticipate
a path to Al systems whose native architecture mirrors our own, potentially easing the
problem of aligning machine behaviour with human values.

Experts hold even more disparate views on what will ultimately be required for faithful
brain emulation. Will it demand neuron-by-neuron reconstruction, or must we descend to
individual molecules and their conformational states? Should the scope encompass the
entire body and nervous system, or can we isolate the brain, or even specific regions like
the cortex or cerebellum? Numerous factors beyond neurons and synapses could prove
necessary: glial cells, neuromodulatory peptides, hormones, ion concentrations, gap
junctions, synaptic plasticity rules, and perhaps even the diffusion dynamics of signalling
molecules. The relative importance of each remains uncertain, and this report does not
attempt to cover every conceivable emulation possibility. Ultimately, determining which
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variables are essential is a strictly empirical question that must be resolved through the
interplay between modeling and experimentation.

Here, with the input of countless experts in the field, we provide a detailed assessment
organized around three fundamental capabilities: recording brain function, mapping
brain structure, and emulation of both on computers. We focus on the ingredients most
commonly identified as necessary: electrical activity at single-neuron resolution, synaptic
connectivity, molecular annotations that distinguish cell types and synaptic properties,
and the computational frameworks needed to integrate them. Our analysis concentrates
on five commonly studied organisms, representing the primary systems that have driven
most research relevant to whole-brain emulation.

In the following we present organism-level investigations across the end-to-end brain
emulation pipeline (see figure AbroadStark2Gladiator) first, followed by detailed method-
ological chapters on neural dynamics, connectomics, and computational neuroscience.
The upcoming paragraphs and definitions aim to build a shared terminology we can
leverage across the report. Readers new to the field may prefer to read the Glossary and
the methodological chapters before turning to the organism sections.

To emulate a brain, researchers must first understand its neural dynamics: the patterns

of activity that emerge as organisms perceive, decide, and act. This functional mapping
occurs in vivo, using recording methods that span a wide range of scales and invasive-
ness. Non-invasive techniques like fMRI and EEG can monitor whole-brain indicators

of activity but lack the spatial and temporal precision needed to resolve individual neu-
rons or single spikes. While valuable for human neuroscience and clinical applications,
these approaches do not provide the detail necessary for neuron-scale emulation and
thus receive limited coverage in this report. For sufficient resolution, researchers turn to
invasive techniques. Optical methods track activity in thousands of neurons simultane-
ously using fluorescent indicators and microscopy, while electrophysiological approaches
insert electrode arrays to capture precise electrical signals from hundreds to thousands
of cells. Beyond passive recording, perturbation methods like optogenetics allow re-
searchers to selectively activate or silence specific neurons while observing network
responses, enabling causal rather than merely correlational mapping of circuit function.
These measurements fulfill two indispensable functions for emulation. First, they supply
the constraints needed for fitting parameters of computational brain models: providing
the firing rates, temporal patterns, and synaptic properties that connectivity alone cannot
reveal. Second, they establish validation criteria: once model parameters have been fitted,
the same recordings provide quantitative benchmarks that brain emulations must match
to demonstrate biological fidelity.

Once functional data has been collected in vivo, the next step is mapping the brain’'s
physical architecture ex vivo. This is the domain of connectomics, which aims to recon-
struct the organism’s complete neural wiring diagram, and potentially its molecular com-
position, at synaptic resolution. Today this is an inherently destructive process conducted
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post-mortem. The brain is first chemically fixed to preserve its structure, then extracted
and sliced into ultrathin sections, often just tens of nanometers thick. These sections are
systematically imaged using techniques like electron microscopy (EM), which provides
the resolution necessary to visualize individual synapses and subcellular structures.

The resulting massive image datasets are computationally processed through Al-driven
algorithms that align sections and trace neuron boundaries, followed by extensive human
proofreading to correct tracing errors. However, EM-based pipelines face two major lim-
itations: proofreading is labor-intensive and expensive, and EM captures minimal molec-
ular information about neurotransmitter identities, synaptic receptor types, ion channel
distributions, or the protein markers that define cell classes. These molecular features
determine functional properties like synaptic strength and neural excitability, which are
likely necessary for accurate model parameterization. These limitations have motivated
the development of alternative approaches. X-ray microscopy can image much thicker
tissue sections, which reduces the number of slices and simplifies reconstruction, though
it remains an emerging technology. Expansion microscopy (ExM) has reached greater
maturity and addresses both problems: it physically expands tissue to enable light-based
imaging at synaptic resolution while still allowing molecular labeling techniques that can
identify properties of interest. Furthermore, molecular labeling combined with genetic
barcoding techniques assign and read out unique identifiers to neurons, allowing com-
putational algorithms to match disconnected fragments and massively reduce manual
proofreading.

With structural and functional data in hand, computational neuroscience seeks to instanti-
ate accurate brain models in silico. This modelling work happens entirely in the computer,
using previously acquired experimental data as constraints. Neurons can be modelled
digitally with varying complexity, from simple integrate-and-fire units to Hodgkin-Huxley
formulations that explicitly track ion-channel kinetics. Synapses range from static weights
to activity-dependent plasticity rules that strengthen or weaken according to spike
history. All these characteristics are abstracted into mathematical expression, consisting
of countless variables, or parameters, per neuron and synapse. When functional record-
ings are available for the target organism, parameters are tuned to reproduce observed
firing rates, spike timing, and perturbation responses. When such recordings are absent,
parameters are inferred only indirectly, using proxy constraints such as structural connec-
tivity, cell-type specific statistics, and functional measurements from related organisms,
which still leaves many degrees of freedom unconstrained. The resulting network can
then be evaluated in two ways: first, against held-out neural activity to test predictive
accuracy; second, through embodiment in a simulated or robotic environment where sen-
sory inputs drive the model and motor outputs are compared to the original behaviour.
Discrepancies at either level reveal gaps in the model, whether missing structural details,
insufficient functional constraints, or inappropriate modeling choices. This feedback is
what makes emulation the integrative test of the entire pipeline: it identifies where data
collection must be refined or expanded, closing the loop by directing future experimental
work toward the measurements that are most likely to improve the next generation of
emulations.
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I  Overview of steps required for brain emulation.

Using the complete toolkit of neural dynamics to measure variables influencing brain activity while the organism is
still alive (1), then destructive reconstruction by connectomic methods to map the brain’s structure (2), and finally
computational neuroscience approaches to use all of the data to create an emulation (3). The computational model
predicts electrical neuronal activity constrained by reconstructed connections between neurons and potentially
molecular substructure (e.g, individual transmitters and proteins). During embodiment, neural activity is decoded in
behavior such as language or movement, and information from the environment, such as light and sound, as well as
local or body-wide signal molecules like hormones or neuropeptides, encoded back into neural activity.
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Definitions

We provide a full glossary at the end of the report. But for a few terms and concepts we
want to add clarifications for all readers.

Specifically, the terms ‘simulation’ and ‘emulation’ are often used interchangeably. In this
report, however, we draw a sharp distinction, adopting the formal framework established
in 2008 by Sandberg and Bostrom (Sandberg and Bostrom, 2008). In particular, we
consider a model a simulation if, given the same inputs and initial conditions, it matches
a target system'’s outputs without necessarily reproducing the internal causal dynamics
that produced them at a chosen level of biophysical detail. We consider a model an emu-
lation if it matches the target system'’s outputs by implementing the same internal causal
dynamics at a chosen level of biophysical detail, ensuring that it behaves like the original
for the same underlying reasons.

The practical importance of this distinction is well-illustrated by considering a large
language model trained on an individual's diary. Such a model functions as a simulation:
its objective is to learn and reproduce the statistical patterns of the source text, enabling
it to convincingly replicate the author’s writing style and expressed views. It achieves
high performance on this reference dataset (in-distribution behavior) but is likely to fail
when generalizing to novel scenarios because it has not captured the causal structure of
the brain that produced the text. This is due to a fundamental information bottleneck: the
diary, as a low-bandwidth output, contains far less information than is required to unique-
ly specify the complex internal state of the brain that wrote it (Sandberg, 2012). As a
consequence, when prompted about a childhood memory not mentioned in the diary, the
simulation would most likely generate a plausible fabrication, whereas a true emulation
would access the causal memory trace itself, or report its absence.

While the conceptual distinction is clear, operationalizing it requires specific criteria. To
this end, we introduce the term minimal brain emulation to define the minimum properties
or “"biophysical components” we consider necessary for a model to be classified as an
emulation rather than a simulation. It is crucial to note that meeting this baseline does
not, by itself, say anything about whether an emulation is accurate. Accuracy is a sepa-
rate, quantitative measure of how well a model’s predictions match a biological reference.
Instead, this baseline establishes the necessary, but not sufficient, foundation for a mod-
el's architecture to even be considered a candidate for achieving high-fidelity emulation.
The specific criteria that constitute a minimal brain emulation based on our minimal brain
emulation model components are detailed in the table below. The core properties are:

—26



State of Brain Emulation Report 2025 Part I: Foundations

Approximately covering all neurons in the organism's brain

Based on accurate synaptic-level connectome

Modelling at least some cell type diversity, e.g., at the neuronal subclass level (such
as Pvalb, Sst, Vip inhibitory subclasses, or differences between cortical layers)
Modelling at least at the level of point neurons

Consistent with the scale of neuronal spiking activity.

Finally, we wish to note that the term 'whole brain’ lacks a standardized definition and
is applied inconsistently across the literature. To ensure precision within this report, we
adopt a quantitative threshold: a model is considered ‘whole brain’ if it incorporates at
least 95% of neurons and at least 95% of brain volume for the respective organism.

(44

AAA brain emulation is a computational model
that aims to match a brain’s biological components
and internal causal dynamics at a chosen level of
biophysical detail.
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Scales for Defining Brain Emulations

A) Dimensions of brain representations spanning from pure simulation to full emulation. The requirements in bold constitute “minimal brain emulation components” as defined by the authors.
B) ) Observable Outputs of Simulations / Emulations.

A) Connectivity accuracy Percentage of Cell types Plasticity Neuronal Neuromodulation Temporal resolution
neurons Accuracy
Pure simu- Artificial (no real Small circuit - sub- No cell types (only one Completely static None (no neuromod- No concept of time
lation connectivity data, using stantially less than neuron type, e.g, like network structure ulation signaling (ANNS) or very coarse
random or artificial a brain area. in typical ANNs). and synaptic systems modeled) representation of time
connections) parameters. (like "before” and “after”).
Simple statistical rules A whole brain Most basic cell types, Some limited Neuronal Single modulator Slow relative to neuronal
(inspired by a few bio- area or multiple e.g., excitatory vs. plasticity, such networks (ANNs (single neuromodu- spiking activity (hun-
logical observations) interacting brain inhibitory neurons. as short-term with units like |ation signaling sys- dreds of milliseconds to
areas. plasticity. ReLU, firing rate tem, like dopamine seconds and more).
units, no spiking) only)
Complex statistical ~Whole brain Some cell type More extensive Point Neurons Multiple modula- Consistent with the
rules (from systematic diversity, e.g., at the plasticity (e.g., (LIF) tors (interacting scale of neuronal spik-
biological studies and/ neuronal subclass STDP). neuromodulation ing activity.
or partial connectomic level (such as Pvalb, signaling systems)
information) Sst, Vip inhibitory
subclasses, or
differences between
cortical layers).
Minimal brain Accurate connectome ~Whole body Diverse cell types, Full dynamic Neuronal Com- Complex system Fast (microseconds or
emulation (complete, including possibly including plasticity, including partments (interacting neuro- faster, capturing details
verified synaptic non-neuronal cells. growth and pruning modulation systems of fast subcellular pro-
connections) of connections. with feedback) cesses).
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B)

Behavior Complexity

Personality- defining
characteristics

In / Qut-of-distribution

Learning horizon

No representation

Complete represen-
tation

None (no emergent behaviors modeled)

Simple outputs (basic stimulus-response
patterns)

Feedback loops (simple feedback between
different neural systems)

Complex behaviors (emerging from system
interactions)

None (no personality traits repre-
sented)

rules)

Scattered traits (emerging from
network interactions)

Complete profile (personality profile
emerging from neural dynamics)

No behavior

No Learning

Short term (seconds)

Medium Term (days)

Out-of-distribution behavior

Long-term (years)
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In the following chapters, we juxtapose key anatomical and behavioural features of C.
elegans, larval zebrafish, Drosophila, the mouse and the human brain. The former consti-
tute four commonly used animal models in neuroscience. However, many other relevant
species exist that this report was not able to cover: from other small fish like Danionella
(Hoffman et al., 2023), bees, ants, cockroaches, rats (Herculano-Houzel and Lent, 2005;
Welniak-Kaminska et al., 2019, see also these two videos), to marmosets (Herculano-Hou-
zel et al., 2007; Seki et al., 2017) and rhesus macaques (Dash et al., 2023; Herculano-Hou-
zel et al,, 2007) - among others.

The number of neurons varies dramatically across the animal kingdom. Some multicellu-
lar animals, like sponges, possess no neurons at all. Among those with nervous systems,
counts range from organisms like Intoshia variabili with as few as 4-6 neurons (Slyusarev
et al,, 2023) to elephants with an estimated 257 billion neurons

(Herculano-Houzel et al.,, 2014). Current single-neuron recording technologies allow for
monitoring approximately 1,000,000 neurons in mice (~1% of the brain), and a key chal-
lenge for the upcoming decade in neuroscience is to scale this to 100 million neurons.
However, further increases may eventually encounter physical limitations, potentially cap-
ping the maximum number of neurons that can be simultaneously recorded at single-cell
resolution (Marblestone, 2013).
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The information presented in the chapters is limited to data and methods that, in theory,
allow for single-neuron resolution. Accordingly, barely any non-invasive recording mo-
dalities experiments or meso-scale microscopy with resolutions below synaptic reso-
lution are discussed. Comprehensive discussions of general methodological details are
discussed in the respective chapters after the organism section. Readers new to the field
might want to first read those chapters, as organism chapters assume fluency across
Neural Dynamics, Connectomics, and Computational Neuroscience.

Based on outlook sections of papers referenced and conversations with experts, we con-
clude each organism chapter with a model organism overview and gap analysis:

«  Pros and cons of anticipated scientific insights and experimental tractability
« A non-exhaustive list of gaps and illustrative project opportunities
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C. elegans

Anatomy & Behavior

Caenorhabditis elegans (C. elegans) is a worm the size of a grain of salt (~1mm long, 50
um in diameter), or 0.002 mm?®. Hermaphrodite worms have a total of 300 neurons across
their bodies (White et al, 1986, Skuhersky et al., 2022), with neurons distributed between
a dense anterior “brain” region containing roughly half, and the remainder organized in
ganglia and as motor neurons throughout the body (Arnatkevicitte et al,, 2018). Only a
few of these neurons are thought to spike. For example, motor neurons are believed to
rely on graded signals rather than firing action potentials, due to their reported lack of
voltage-gated sodium channels (Goodman et al,, 1998). Specific C. elegans neurons, in-
cluding sensory types and even certain motor neurons involved in behaviors like defeca-
tion, do fire all-or-none, calcium-based action potentials. However, the typical firing rates
of these spiking neurons are not yet well characterized across the nervous system, es-
pecially under natural conditions. The C. elegans nervous system is known for its overall
stereotypy. However, even in this system, studies indicate individual variability in synaptic
wiring, with some chemical synapses differing between genetically identical animals
(Witvliet et al., 2021). This variability may contribute to individual behavioral differences.
The typical worm lives for roughly two weeks at 20 °C (Mack et al., 2018).
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ISR C. elegans behavior

C. elegans responding to a touch stimulus

C. elegans exhibits a diverse and adaptive behavioral repertoire, enabling it to thrive

in dynamic environments. Its locomotion includes forward crawling, reversals, head
movements, and pauses, which combine into higher-order states like “roaming” (rapid
movement with few turns) and “dwelling” (slower movement with frequent turns). When
food is removed, the worm executes a precise search strategy, starting with local explo-
ration through sharp turns before transitioning to wider-ranging movement. It navigates
chemical gradients to locate attractive substances like NaCl and temperature gradients
to find its preferred thermal conditions. Remarkably, C. elegans can learn from experi-
ence, associating specific cues with food or harm. For example, it increases attraction
to odors linked to food and avoids chemicals or temperatures associated with negative
experiences. Males display additional behaviors, such as leaving food to search for mates,
highlighting the worm'’s behavioral flexibility (Sterling and Laughlin, 2015; Bainbridge et
al., 2023).

Beyond wakeful behaviors, C. elegans exhibits sleep-like states, including developmen-
tally timed sleep during larval molting and quiescence in response to stress or starvation.
These states involve periods of reduced movement and responsiveness, akin to sleep

in other animals. The worm also displays brief spontaneous pauses during feeding and
prolonged quiescence after satiation, mirroring behavioral sequences seen in higher
organisms. Together, these behaviors - ranging from basic locomotion and navigation to
learning, memory, and sleep - underscore the remarkable adaptability of C. elegans and
its ability to respond effectively to environmental challenges (Flavell et al.,, 2020).
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Neural Dynamics

Neural activity recording

Typical GCaMP-based approach at moderate laser power and short epochs allows
repeated short sessions (5-15 minutes each) over several days, totalling a few hours of
imaging across the life of a worm without severely compromising the animal. Proof-of-
concept whole-brain or whole-body calcium imaging of C. elegans has been achieved,
e.g., using light field microscopy (Prevedel et al., 2014), a fully automated tracking plat-
form to enable freely-moving imaging (Li et al.,, 2021), improved detection, tracking, and
segmentation algorithms (Wu et al., 2022; Lanza et al.,, 2024). Recent advances in live
animal labeling, such as NeuroPAL (Yemini et al., 2021), create unique fluorescent labels
of each neuron in the worm, allowing for almost unambiguous identification of each of the
300 neurons in freely behaving worms, though activity recording itself requires separate,
co-expressed functional indicators (e.g.,, GCaMP). No large-scale whole-body neuron
(i.e., recording from 95% of all neurons, across 95% of the volume) activity datasets of

C. elegans are available today (Sprague et al., 2024; Simeon et al., 2024). Atanas et al.
performed imaging of approximately 60 freely moving animals for a total of ~1,000 min-
utes of imaging, measuring the activity of approximately 150 head neurons (Atanas et al.,
2023). Individual sessions per animal were 16 minutes, often split into two 8-minute seg-
ments, and temporal resolution was 1.7 Hz. They used a nuclear calcium indicator (NLS-
GCaMPT7f) and a spinning disk confocal for volumetric fluorescence imaging, coupled
with brightfield imaging of the worm’s behavior. After processing, this generated about 30
GB.

(44

AAA brain emulation is a computational model
that aims to match a brain’s biological components
and internal causal dynamics at a chosen level of
biophysical detail.
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Z[V:1FM Overview of the optical neural recording landscape in C. elegans:

Radar plots based on the optical recording literature cited in the report. We plot the following dimensions of brain re-
cordings: spatial resolution, brain volume, temporal resolution, and (estimated) individual and cumulative recording
duration. The plots split recordings from fixated (A) and freely moving experiments (B). The outer ring is normalized
to the maximum known values. Each ring represents one order of magnitude. The data for this figure is available in
the linked data repository.
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While patch-clamp recordings in C. elegans offer millisecond precision for directly mea-
suring electrical activity in neurons and muscles, this technique is practically limited to
recording from only one or a minimal number of cells at a time, making it best suited for
detailed studies of specific ion channels and synaptic connections. The main drawbacks
are that it requires careful dissection of the worm'’s protective outer layer and can only
record from immobilized animals, making it impossible to study neural activity during
behavior (Goodman et al., 2012). Voltage imaging with GEVIs offers a complementary
approach, enabling researchers to simultaneously measure electrical activity across mul-
tiple cells in living, behaving worms. The main limitation is that GEVIs produce relatively
weak fluorescent signals compared to calcium indicators. However, recent advances us-
ing rhodopsin-derived indicators, such as Arch-based GEVIs, have improved their bright-
ness and sensitivity (Hashemi et al.,, 2019). Tokunaga et al. recorded voltage in individual
neurons from several hundred individuals for 30-60s at 20-250 Hz (Tokunaga et al., 2024).

Neurotransmitters and Neuromodulators

The C. elegans genome encodes over 300 neuropeptides processed from approximately
160 precursor genes, along with around 150 peptide G protein-coupled receptors (GP-
CRs) (Taylor et al., 2021). Recent large-scale deorphanization efforts have identified 461
peptide-GPCR signaling pairs, providing unprecedented insight into the organization of
peptidergic signaling (Beets et al.,, 2023). This work revealed that while some peptide-GP-
CR interactions are highly specific, others display complex combinatorial patterns - indi-
vidual neuropeptides can activate multiple receptors, and single receptors can respond to
various peptides (Beets et al,, 2023; Ripoll-Sanchez et al.,, 2023). Functional studies indi-
cate that neuropeptides operate across various timescales in C. elegans, from seconds to
hours. While typically considered slow modulators, some neuropeptides like NLP-40 can
trigger responses within seconds. Recent whole-brain imaging combined with optoge-
netics has revealed that many rapid functional connections between neurons depend

on dense-core vesicle release, suggesting neuropeptides extensively shape fast neural
dynamics (Randi et al.,, 2023). The peptidergic network appears organized into distinct
functional modules, including specialized “hub” neurons rich in dense-core vesicles and
highly connected through peptidergic signaling (Ripoll-Sanchez et al., 2023).

Perturbation

Due to its anatomy, C. elegans represents an exemplary model organism for perturbation
studies. Since the first expression of optogenetic proteins in C. elegans in 2005 (Boyden
et al,, 2005), optogenetic studies have revealed numerous insights into neural circuit
function (Piatkevich and Boyden, 2023): neurons controlling locomotor rhythms (Fouad et
al,, 2018), interneurons that integrate multiple olfactory inputs to represent valence (Do-
bosiewicz et al., 2019), single neurons that can both encode chemotactic memory (Luo

et al., 2014) and regulate multiple behavioral outputs (Li et al., 2014), circuits mediating
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behavioral state switching in response to oxygen levels (Laurent et al., 2015), and specific
interneurons controlling chemotaxis programs (Kocabas et al., 2012). Additionally, optoge-
netics has revealed how synaptic energy demand regulates glycolytic protein clustering
and identified neurons that contribute oscillatory activity controlling backward locomo-
tion (Piatkevich and Boyden, 2023). Recent technical advances have dramatically expand-
ed the scale and precision of perturbation studies in the worm. Sharma et al. developed
TWISP (Transgenic Worm for Interrogating Signal Propagation), a strain expressing both
optogenetic actuators and calcium indicators in all neurons while avoiding optical cross-
talk —-unwanted interference between light signals used for neural activation and activity
measurement (Sharma et al., 2023). Moreover, Randi et al. systematically measured signal
propagation between 23,433 pairs of neurons in the worm’s head through direct optoge-
netic activation combined with whole-brain calcium imaging, revealing that actual signal
flow often differs from predictions based on anatomical connectivity due to extrasynaptic
signaling (Randi et al., 2023).

Connectomics

The relative simplicity and high degree of stereotypy in C. elegans neuroanatomy made
it the target for the first complete connectome mapping effort (Brenner, 1974, Brenner,
2002). In 1986, White and colleagues published this landmark reconstruction, detailing
approximately 5000 chemical synapses, 2000 neuromuscular junctions, and 600 gap
junctions (White et al, 1986). However, as discussed in later analyses, this connectome
was a composite, painstakingly assembled from electron microscopy sections of multi-
ple, different individuals: specifically, three adult hermaphrodites, one L4 larva, and one
adult male. This mosaic approach, necessary due to the technical challenges of the time,
combined with potential preparation-induced distortions and significant manual curation,
resulted in a generalized model. While groundbreaking, this method inherently introduced
variability and did not fully capture the precise neuron positions or individual idiosyn-
crasies now being addressed by modern atlases (Skuhersky et al., 2022). The underlying
assumption of largely consistent neuronal positions and connectivity across individuals
(Varshney et al., 2011) was nonetheless crucial for this effort.

This initial mapping was later complemented by the reconstruction of the male-specific
nervous system, which contains approximately 80 additional neurons primarily involved
in mating behaviors (Jarrell et al, 2011). A comprehensive re-mapping effort by Cook et
al. (2019) produced updated connectomes for both sexes, correcting earlier errors and
introducing synaptic strength weights based on measuring how many consecutive tissue
sections each synapse spanned in the electron microscope images (Cook et al, 2019).
More recent work has expanded into developmental neurobiology, with reconstructions
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across five different developmental stages (Witvliet et al, 2021), while continuing refine-
ments driven by recent advances in neuron identification, alignment, processing, and
scale have improved both accuracy and completeness (Skuhersky et al, 2022; Brittin et
al, 2021). To date, C. elegans remains the organism with the most individual connectomes
reconstructed. This includes approximately ten datasets detailing its complete brain (Wit-
vliet et al., 2021) or main neuropil (Brittin et al., 2020), complemented by two whole-ani-
mal connectomes (Cook et al,, 2019) and a near-complete somatic nervous system wiring
diagram (Varshney et al., 2011), all from distinct individual specimens. However, due to the
highly stereotyped nature of C. elegans neural connectivity, the marginal scientific value
of additional individuals may be limited compared to other organisms with more variable
nervous systems.

While electron microscopy provided the foundational C. elegans connectome maps, these
structural maps alone do not capture the rich molecular complexity that supports the
worm'’s behaviors. Despite having only 300 neurons, C. elegans relies heavily on sophis-
ticated molecular machinery at each synapse, with the worm's postsynaptic proteins
amounting to about half the number for mammals (Emes et al., 2008). Optical approaches
like expansion microscopy have emerged as crucial complementary tools to understand
this molecular complexity. The first C. elegans-specific expansion microscopy proto-

col (ExCEL) enabled immunostaining for molecular identification and tissue expansion
through innovative cuticle permeabilization techniques (Yu et al., 2020). With standard
ExCEL achieving 3.5x expansion and iterative EXCEL reaching up to 20x expansion (25
nm resolution), these methods may resolve individual synaptic connections while pre-
serving the critical molecular information that EM cannot capture. However, achieving
effective and reliable expansion microscopy in C. elegans remains challenging, with the
worm'’s cuticle often acting as an impermeable barrier, severely limiting chemical labeling
and detection to organs directly exposed to the external environment (Kuo et al., 2024).

Given a total body volume of 2-6 million pm?® for an adult hermaphrodite worm, imaging
at 10nm isotropic resolution would theoretically generate a total of 2-6 x 10" voxels. At

1 byte per voxel for a single channel, this would theoretically require 2-6 terabytes of
storage, scaling linearly with the number of colors. Historically, early attempts at com-
puter-assisted reconstruction in the 1970s by White et al. highlight the immense compu-
tational hurdles of the era. The ‘Modular I' computer they employed, a machine with only
64 KB of memory and 22 MB of storage that required custom-written operating systems
in assembly language, proved insufficient for the task (Emmons, 2015). Consequently,
they resorted to the painstaking manual annotation of printed electron micrographs using
colored Rapidograph pens to trace neurons through serial sections. The tracing and re-
construction of the C. elegans required years of painstaking work, with the project taking
15 years to complete. More recent efforts, such as Cook et al., have leveraged specialized
software tools like Elegance (Xu et al., 2013), resulting in speedups of several orders of
magnitude, and recent advances in machine learning and computational processing have
sped up the process further.
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Computational Neuroscience

The history of C. elegans emulation is marked by ambitious efforts that, while pioneering,
were ultimately constrained by the nascent state of neurotechnology and a critical lack
of vertical integration. Early conceptual work, such as biophysical locomotion modeling
(Neibur and Erdos, 1991) and planned, though unrealized, comprehensive models in the
late 1990s, signaled the field's aspirations. The Virtual C. elegans project (Suzuki et al.,
2005) made headway by simulating motor control but had to approximate missing bio-
physical parameters using machine learning, highlighting the data gaps. Later, more com-
prehensive initiatives like the community-driven OpenWorm (Szigeti et al., 2014), initiated
around 2011, and academically-led projects such as Nemaload (2011-2013), which aimed
to leverage the then-new optogenetic tools, also faced these fundamental limitations. At
the time, even with the static connectome (White et al., 1986) available, the technologies
for detailed, dynamic data acquisition were immature. Optogenetic perturbation for caus-
al inference only emerged in C. elegans in 2005. As discussed above, large-scale neural
recordings in the worm were, and to a large degree still are, in their infancy (Stiefel and
Brooks, 2019) - partly due to the dynamic nature of the worm's nervous system, which,
with its constant motion and deformation, made tracking of individual neurons a chal-
lenge (Nguyen et al., 2017). This confluence of technological limitations in neural record-
ing, perturbation, tracking, and imaging meant that the kind of comprehensive, correlated
dynamic data needed to truly understand and emulate the worm'’s nervous system simply
was not available during those times, directly contributing to the development of Focused
Research Organizations (FROs, Marblestone et al., 2022), designed to be capable of tack-
ling projects requiring such a high degree of systems integration.

Only now, with the advent of high-throughput connectomics, advanced imaging tech-
niques, and increasingly sophisticated computational tools, the field is beginning to
amass the data necessary to make meaningful progress towards C. elegans emulation.
While no FRO dedicated to C. elegans exists, recent integrative models like BAAIWorm
demonstrate important initial successes, such as replicating basic sensory integration
and realistic zigzag locomotion behavior (Zhao et al., 2024). In the following, we discuss
the most prominent computational modelling attempts.

OpenWorm

OpenWorm, launched in 2011, represents one of the most comprehensive attempts to
create an integrative biological simulation of C. elegans, implementing a multi-scale bio-
physical approach (see Virtual Worm Project “worm body") that spans from ion channel
dynamics to whole-organism behavior (Sarma et al,, 2018).

The simulation architecture integrates multiple types of experimental data, though signifi-
cant gaps remain. Connectome data from electron microscopy provides the basic net-

-39



State of Brain Emulation Report 2025 Part 2: State of Brain Emulation across Organisms

work structure (White et al., 1986), while calcium imaging data informs neural dynamics.
However, a major challenge is the limited availability of electrophysiological data - patch-

clamp recordings exist for only a small subset of ion channels, necessitating homolo-
gy-based inference from other organisms for parameter estimation (Sarma et al., 2018).

The project's core simulation stack consists of several interconnected frameworks

(see figure below), enabling simulation at multiple levels of abstraction - from basic
integrate-and-fire neurons to detailed multi-compartment models incorporating Hod-
gkin-Huxley dynamics (Gleeson et al.,, 2018). A critical limitation in the current implemen-
tation is the unidirectional flow of information from neural simulation to body mechanics,
though work is ongoing to incorporate sensory feedback (Sarma et al., 2018).

IEIXY  Replication from Figure 1from (Sarma et al, 2018).

Overview of OpenWorm Simulation stack

a) A component diagram describing the relationships between inputs and outputs of sub-projects within OpenWorm
b) A highly simplified schematic view of the system of equations executed in the combined c302/Sibernetic system.
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Figure 1. Overview of OpenWorm simulation stack. (a) A component diagram describing the relationships between inputs and outputs of sub-projects within
OpenWorm. (b) A highly simplified schematic view of the system of equations executed in the combined ¢302/Sibernetic system.
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The project employs sophisticated validation frameworks, particularly SciUnit, to system-
atically compare model outputs against experimental data across multiple scales (Omar
et al,, 2014). Behavioral validation compares simulated movement patterns against real
worm tracking data, while neural validation involves comparing activity patterns with cal-
cium imaging recordings (Javer et al., 2018). The current implementation can demonstrate
basic locomotion, though matching the full repertoire of C. elegans behaviors (including
chemotaxis, thermotaxis, and learning) remains a future goal. These limitations reflect
computational challenges and gaps in biological understanding of how sensory informa-
tion is processed to generate behavior.

EEE] OpenWorm simulation

Demonstration of a computational model of the C. elegans. (Github page, 2024)

SIBERNETIC {2011-2017) by Andrey Palyanov and Sergey Khayrulin. Build from 10/10/2017 sources (development branch)

Liguid particles: 3588, elastic matter p.: 51010. boundary p.: 31408: total count: 51398 :: SIBERNETIC (sibsrnetic.org) 2011-2017 ::
time step: B4, phyzical time; 0,003 =

-
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The OpenWorm project makes its tools and simulations accessible through the Geppetto
visualization platform (Cantarelli et al., 2018), enabling web-based exploration of mod-
els and data. This infrastructure, combined with the project’'s open-science approach,
provides a foundation for community-driven refinement of whole-organism simulations
(Larson, 2021).

Simeon et al, 2024

Recent approaches leveraging artificial neural networks (ANNSs) offer a complementary
data-driven strategy for modeling C. elegans neural dynamics, with particular empha-

sis on capturing the inherent predictability of neural activity patterns without requiring
explicit biophysical modeling (Simeon et al. 2024). This represents a shift from traditional
bottom-up approaches toward letting the underlying structure emerge from experimental
data.

Simeon et al's approach makes extensive use of calcium imaging datasets, integrating
recordings from multiple experimental sources spanning different behavioral contexts -
from freely moving to immobilized worms, and from sleep to optogenetically stimulated
states. The combined dataset represents neural activity from 284 worms. A key inno-
vation is the standardization of data processing across sources, including z-scoring of
calcium signals and temporal alignment, enabling the pooling of data despite varying
experimental conditions.

The approach currently focuses on neural activity prediction without direct connection to
behavioral outputs. The simulation framework compared multiple neural network archi-
tectures, including Long-Short Term Memory (LSTM) networks, Transformer networks,
and Feedforward networks. All architectures shared a common structural framework con-
sisting of an embedding layer for neural state representation, a core processing module,
and a readout layer for prediction.

Model validation focuses on next-time-step prediction accuracy, using a teacher-student
framework where the biological nervous system serves as the teacher and ANN models
as students. The approach employs a 50:50 temporal split for validation, where models
are trained on the first half of neural recordings and tested on the second half.

Current implementations demonstrate success in short-term prediction of neural activity
patterns for up to approximately 20 seconds (accurately predicting roughly 20-30 time-
steps of ~0.7s each), with recurrent models (e.g.,, LSTM) showing superior performance
compared to other architectures with the current dataset. However, long-horizon predic-
tive capabilities remain limited. It is worth noting that this represents a prediction of au-
tonomous neural activity without direct modeling of sensory input or behavioral context.
The models show consistent scaling properties across different experimental conditions,
suggesting they capture fundamental aspects of neural dynamics. CTRNN models, in
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particular, exhibited the best scaling properties; for instance, their prediction error consis-
tently decreased with more training data, such that doubling the amount of training data
reduced the prediction error by a factor of about 1.57. This scaling behavior allows for an
estimation of data requirements for longer predictions. To extend predictive success from
a baseline of approximately 20 timesteps to the full 180 timesteps the dataset would need
to be approximately 30 times larger than the current one. This translates to requiring re-
cordings from roughly 8,400 worms (up from the current 284), highlighting the substantial
data requirements for achieving robust long-horizon predictions of autonomous neural
dynamics using this approach.

Zhao et al, 2024

BAAIWorm, introduced in 2024, represents a significant advance in integrative biological
simulation of C. elegans by implementing a closed-loop system bridging brain dynamics,
body mechanics, and environmental interactions (Zhao et al, 2024). The project builds
upon OpenWorm's foundational contributions, particularly its cell model morphologies,
synaptic dynamics, and 3D body representations, while introducing crucial new capabili-
ties for real-time simulation and behavioral feedback.

The model integrates diverse experimental data, including ion channel dynamics, neural
morphologies, electrophysiology, and whole-brain calcium imaging. A notable strength is
validating single-neuron models against patch-clamp recordings for five representative
neurons (sensory, inter-, command, and motor neurons), with parameters for other neu-
rons derived through functional grouping. The body-environment component leverages
detailed anatomical data to construct a biomechanical model comprising 3,341 tetrahedra
and 96 muscles.

The neural network model implements 136 neurons as multicompartmental models with
sub-2um compartments, incorporating 14 types of ion channels. Rather than enforcing
strict neurotransmitter constraints, the model uses an optimization approach to deter-
mine synaptic properties that reproduce observed dynamics. The body-environment
simulation employs simplified but efficient hydrodynamics, enabling real-time simulation
at 30 frames per second while maintaining behaviorally realistic movement patterns.

The model demonstrates multi-scale validation, from single-neuron current-voltage
characteristics to network-level correlation matrices (achieving 0.076 mean squared error
against calcium imaging data) and behavioral reproduction of chemotaxis. While the cur-
rent implementation focuses specifically on zigzag locomotion, synthetic perturbation ex-
periments reveal important insights about neural circuit function, notably, the absence of
neurites or synaptic/gap junctions disrupts global neural dynamics and impairs forward
motion. A novel Target Body Reference Coordinate System enables precise quantification
of movement patterns, providing a stable framework for comparing simulated and biolog-
ical behavior.
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While BAAIWorm represents a significant advance in integrating different scales of
biological simulation, several challenges remain, including expanding to the complete
300-neuron network and incorporating additional behaviors beyond chemotaxis.

I3 BAAIWorm moving towards simulated chemicals

Video showing the simulated worm (Zhao et al,, 2024)
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AAA brain emulation is a computational model
that aims to match a brain’s biological components
and internal causal dynamics at a chosen level of
biophysical detail.
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I3 Replication from Figure 1from Zhao et al, 2024 BAAIWorm

Data collection, component construction, and model optimization

A) Experimental data collection to constrain models. These data include neural morphologies, ion channel models,
electrophysiological recordings of single neurons, connectome, connection models and neural network activities. b,
The construction of multicompartmental neuron models and connection models (synapses and gap junctions). ¢, The
biophysically detailed C. elegans neural network model without functional neural activities. d, Optimization of the

biophysically detailed C. elegans neural network model to achieve realistic network dynamics. Neurons are

color-coded to represent membrane potential.
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Fig. 2| Construction of biophysically detailed neural network model of
C.elegans. a, Experimental data collection to constrain models. These data
include neural morphologies, ion channel models, electrophysiological
recordings of single neurons, connectome, connection models and neural
network activities. b, The construction of multicompartmental neuron models

and connection models (synapses and gap junctions). ¢, The biophysically
detailed C. elegans neural network model without functional neural activities.
d, Optimization of the biophysically detailed C. elegans neural network model
toachieve realistic network dynamics. Neurons are color-coded to represent

membrane potential.
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Gap Analysis

In a 2021 Interview, the long-time OpenWorm lead Stephen Larson advocated that the C.
elegans emulation ecosystem would benefit massively from an integrative approach, the
“Allen Institute for C. elegans research’, that brings the broad range of interdisciplinary
experts together (Larson, 2021). In 2023, (Haspel et al., 2023) proposed systematically
determining the input-output functions of every neuron through comprehensive perturba-
tion experiments in order to fully reverse engineer the entire C. elegans nervous system
and to simulate its full range of behaviors. The project assumes it will need thousands

of hours of experiments, but has not disclosed specific numbers or funding proposals
publicly.

A concentrated, interdisciplinary and sustainably funded effort could likely provide con-
clusive answers to many of the above mentioned points and could mark a transition away

from grants aimed at narrow research questions (e.g., genetics, single-neuron knockouts)
towards a large-scale integrative project across subject matter experts.
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Model Organism Overview: Pros
C. elegans

Cons

Anticipated Scientific Insights Completeness Threshold: What anatomical, molecular, and physiological level of
detail is sufficient to recapitulate worm behavior in silico? Likely the only current

model organism where ultra-high resolution models are possible.

Allows to determine the relative importance of different variables to overall
emulation success: Specifically, non-synaptic signaling in whole-brain models,
gap-junctions, deriving function from structure, extrapolation via cell types, etc

C. elegans promises to be a Rosetta Stone for converting imaging data into
functional models.

Experimental Tractability Substantial existing infrastructure: A decade of OpenWorm and substantial

datasets make it the most mature emulation ecosystem of any organism.

Data acquisition is relatively cheap: The organism is cheaply maintained and
can be produced in large numbers. Genetically modifying the organism is possi-
ble. No highly specialized equipment is necessary, and C. elegans are relatively
cheap to maintain. The scope of all variables is orders of magnitude smaller than
in other organisms.

Simulation is computationally cheap: Memory and compute requirements are
easily covered by modern consumer hardware. Everyone can participate.

Organisms are highly stereotyped: Data can be collected from multiple individ-
uals without getting too many interindividual differences.

Substantial differences to mammalian nervous systems: Some of

the worm’s neurons primarily use graded potentials rather than action
potentials, making direct translation to other organisms challenging
(though synapses seem more similar to other organisms). Additionally, it
makes particularly heavy use of non-neuronal signaling, which may limit
the generalizability.Despite being a model organism in neuroscience and
medicine (e.g. longevity research), it is hard to extrapolate from the worm
to other organisms.

Limited behavioral repertoire: While sophisticated for its size, the be-
havioral repertoire remains relatively constrained compared to vertebrates.
Additionally, the worm lacks clear analogues for many higher cognitive
functions of interest (though it has many neurotransmitters implicated in
human cognitive function).

Little individualism: The opposite side of a highly conserved organism is
that it is hard to study how individual defining characteristics arise.

Challenges of Calcium Imaging: The deformable body and brain make
tracking for calcium imaging more difficult
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Gaps and Opportunities: C. elegans

Gaps and Gaps (non-exhaustive selection) lllustrative Project
opportunities: Opportunities

C. elegans

Neural dynamics Voltage Imaging Technology: Current rhodopsin-based voltage sensors are limited to small fields of view, limiting whole-brain voltage Perturbation-free experiments: By

Connectomics

imaging capabilities. Additionally, voltage imaging can detect rapid events like action potentials, but the signal-to-noise ratio remains a
challenge, particularly in C. elegans neurons, which often exhibit only small membrane potential changes (Hasehmi et al,, 2019)

Calcium Imaging: Nuclear-localized GCaMP, which enables brain-wide recordings, provides more restricted spatial and temporal resolution
than other approaches. This affects our ability to capture fast neural dynamics and the precise timing of neural events. (Atanas et al. 2023)

Integration of Multiple Modalities: While some progress has been made in simultaneous calcium and voltage imaging (Tokunaga et al,,
2024), current approaches require complex optical setups and careful correction of photobleaching effects. The ability to correlate different
measures of neural activity (calcium, voltage, and neurotransmitter release) remains limited.

Long-term Recording Capabilities: The development of nuclear calcium indicator strains has improved long-term imaging capabilities, but
there remains a need for better tools to study neural dynamics across different timescales and behavioral states (Atanas et al, 2023).

Circuit Manipulation Precision: There is a need for improved tools that allow simultaneous manipulation and recording from multiple
identified neurons (Piatkevich, 2023).

Neuropeptide Signaling Resolution: While recent advances have provided insights into peptide-receptor interactions (Beets et al, 2023),
the technology is still in its infancy, and there is a need for tools to visualize neuropeptide signaling in vivo and understand its temporal
dynamics in neural circuit function (Watteyne et al,, 2024).

Relevance of synaptic variability: Researchers have observed that even for identically aged hermaphrodites, as many as forty to fifty per-
cent of the synaptic connections can differ from worm to worm (Brittin et al, 2021; Cook et al,, 2019). This means that two worms will share
most of the same underlying “scaffolding” (i.e, which neurons physically touch), but their synaptic connectivity at those touches may differ
slightly. The relevance of simulation approaches is unclear at this point.

Gap Junctions: Gap junctions are often incompletely captured. Improved methods are needed for consistent visualization and annotation of
electrical synapses across samples. (Witvliet et al,, 2021)

Integration of Multiple Modalities: Current approaches typically analyze either connectivity or activity patterns separately. Integrated
datasets that combine connectomic reconstruction with activity imaging and behavioral correlates are needed to bridge structure-function
relationships.

Dynamic connectivity: the molecular underpinnings that guide the selective strengthening and formation of specific synaptic contacts,
alongside the relative stability of others, remain only partially understood (Brittin et al,, 2021; Cook et al., 2019). Finally, there is growing
recognition that extrasynaptic signaling (including neuropeptides) and gap junctions can be just as critical for circuit function (Randi et al,,
2023). However, legacy datasets often have incomplete elements (Witvliet et al, 2021).

automating the handling of individual
C. elegans using microfluidics and
using a spinning-disk confocal micros-
copy, labs would perform C. elegans
whole-brain imaging of large counts of
freely behaving animals.

Optogenetic perturbation experi-
ments: Activate single neurons, and
measure the behavior and changes in
all other neurons at using a lightsheet
microscope.

The “definitive” gap junction reso-
lution connectome: A connectome

scanned at a resolution sufficient to

determine gap junctions reliably.

The 100 worm connectome project:
to study and determine actual variabil-
ity amongst what are suspected to be
highly stereotyped individuals.

Establish expansion microscopy and
protein labelling: ensure this technol-
ogy reliably works on worms.
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Gaps and Gaps (non-exhaustive selection) lllustrative Project
opportunities: Opportunities

C. elegans

Computational Limited Experimental Electrophysiological Data: Large portions of the worm’s nervous system have only partial biophysical param- Official C. elegans computational
Neuroscience eterization, i.e, missing parameters like time constants and amplitudes of Hodgkin-Huxley-type conductances of different types, which model data Backlog: Concrete list of

determine the intrinsic electrophysiological properties of neurons. Likewise, its parameters of synaptic conductances - latencies, rise and
decay times, short-term plasticity, EPSP and IPSP (or EPSC and IPSC) amplitudes- are used in simulation approaches. (Zhao et al,, 2024;
Sarma et al,, 2018)

Limited behavior repertoire and sensory feedback loops: Collect richer behavioral and sensory feedback loop datasets that enable
respective modeling and verification of computational C. elegans models.

Multi-lab Synergy instead of Heterogeneous and uncoordinated datasets: Data sourced for emulation attempts is scattered rather than
systematically acquired in standardized formats. This slows the overall process substantially. Although many groups research C. elegans,
no lab has all the expertise and technology (e.g., advanced calcium or voltage imaging, computational physics, etc.) required to build a fully
integrated simulation. (Larson, 2021)

Integrate neuropeptide data: Neuropeptides are not accounted for in any simulation approaches.

Long-Horizon Predictive Capabilities: Current computational brain models are limited to seconds and could be expanded substantially.

necessary variables, listed by computa-
tional neuroscientists that can be creat-
ed by students / PhDs / or research
groups. This includes electrophysiolog-
ical parameters as well as behaviors
and sensory feedback loops.

Filling the C. elegans computation-
al model data backlog: Follow-up
project to fill in the gaps in electrophys-
iology and behaviors.

Proposal for “C. elegans Emulation
Institute”: Integrative proposal / FRO
for advancing C. elegans emulation
efforts.
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Larval Zebrafish e ®
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Anatomy & Behavior

The larval zebrafish (Danio rerio), defined as the developmental stage preceding 30 days
post-fertilization (dpf), possesses a transparent body ranging from 3.5 to 7.8 mm in length
at day 5 (Kimmel et al.,, 1995; Svara et al., 2022), roughly 500x the size of C. elegans. The
larval brain, excluding its spine, measures roughly 0.08mm? (400 x 800 X 250 um, W x L
X H) at this stage, contains approximately 100,000 neurons, a number that increases by
two orders of magnitude to 10 million in adults (that is, 90-day old or older individuals),
whose brains measure 0.4-2 mm in thickness and 4.5 mm in length (Wullimann et al.,
1996; Bruzzone et al., 2021; Hill et al,, 2003; Hinsch and Zupanc, 2007). These neurons
utilize action potential-based signaling, similar to mammals, enabling the study of verte-
brate-like neural dynamics. However, comprehensive data on natural in vivo firing rates
across the entire larval brain remain limited. Characterized examples reveal significant
diversity: embryonic primary motoneurons exhibit rhythmic bursts containing high-fre-
quency (40-50 Hz) action potentials (Saint-Amant and Drapeau, 2000), while sensory af-
ferents show low spontaneous rates of ~9 Hz (Levi et al., 2015). Central neurons also vary,
with cerebellar Purkinje cells displaying distinct tonic simple (~9 Hz) and phasic complex
(~0.3 Hz) spiking (Hsieh et al., 2014), cerebellar output neurons showing a baseline spon-
taneous rate around 4 Hz (Najac et al,, 2023), and other central neurons like vestibulospi-
nal cells being largely silent at rest (Hamling et al., 2023).

The transparency of the larval brain, particularly in pigmentless mutants, facilitates
high-resolution optical imaging of neural activity across the entire brain (White et al,,
2008; Antinucci and Hindges, 2016). However, increasing pigmentation in wild-type larvae
typically limits the practical window for such optical approaches to the first 1-2 weeks
post-fertilization (Volkov et al., 2022). Additionally, larval zebrafish respire through their
skin until approximately day 15, allowing for unparalyzed and unanesthetized imaging in
agarose-embedded preparations. This feature, combined with the ability to survive for
extended periods without external food sources, enables long-duration in vivo neural
recordings with minimal maintenance (Hasani et al,, 2023). These anatomical and devel-
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opmental traits make the larval zebrafish a powerful model for studying neural dynamics,
structural connectomics, and structure-function relationships in vertebrate neural circuits.

Larval zebrafish display a diverse and adaptive behavioral repertoire, enabling them to
navigate and thrive in dynamic environments (Zocchi et al.,, 2025). After day 3-4, they exhibit
a range of stereotyped movements, including slow swims (scoots), rapid escape responses
(C-starts), and specialized maneuvers like J-turns for predation (Privat et al, 2020).

Larval Zebrafish Behavior

Spontaneous movement Phototaxis, Hunting, Swimming

These behaviors are finely tuned to sensory inputs: larvae respond to visual stimuli with
optomotor and optokinetic reflexes, acoustic/vibrational cues with escape movements,
and tactile stimuli with highly directional turns. They also display adaptive behaviors such
as phototaxis, visual background adaptation, and alarm responses to chemical cues,
which help them navigate, camouflage, and avoid predators. Social behaviors, such as
shoaling and aggregation, emerge by day 9-10 and are influenced by learned preferences
for conspecifics. Additionally, larvae exhibit circadian rhythms, with periods of activity
during the day and immobility at night, resembling sleep-like states (Fero et al., 2012).

Zebrafish larvae are also capable of multiple forms of learning and memory. Starting at
five days post fertilization, they begin to habituate to repeated stimuli, showing distinct
forms of rapid, short-term, and long-term habituation that depend on specific neural
mechanisms (Roberts et al.,, 2013). For example, long-term habituation of the C-start es-
cape response requires protein synthesis and shares mechanistic similarities with learn-
ing in other species. Zebrafish larvae can also undergo associative learning - for instance,
they learn to move their tails in response to light signals and to avoid areas associated
with electric shock. They also display social learning, as shown by their specific prefer-
ences for shoaling partners based on their early-life exposure to the appearance of other
fish (Roberts et al., 2013).
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Neural Dynamics

Neural activity recording

Neural activity in larval zebrafish can be recorded using head-fixed or freely-moving
preparations (Hasani et al,, 2023). In head-fixed preparations, the fish’'s head is immo-
bilized in agarose, which limits natural behavior but enables stable imaging. Several
approaches have been developed to increase behavioral output: the tail can be freed to
monitor movement intentions, and fish can perform fictive navigation in virtual environ-
ments by using their tail movements to control the change in the virtual environment
(Ahrens et al., 2012; Trivedi and Bollmann, 2013; Vladimirov et al.,, 2014; Torigoe et al,,
2021).

IEIMI3E Overview of the optical neural recording landscape in Larval Zebrafish

Radar plots based on the optical recording literature cited in the report. We plot the following dimensions of fixated
brain recordings: spatial resolution, brain volume, temporal resolution, and (estimated) individual and cumulative
recording duration. Only recordings from fixated (A) and no freely moving experiments are available. The outer ring
is normalized to the maximum known values. Each ring represents one order of magnitude. The data for this figure is
available in the linked data repository.

Temporal
resolution: Hz
10

Duration single
session min

Duration total
repeated
sessions min
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Initial progress towards larger scale brain imaging came from one-photon techniques
like light-sheet microscopy, which achieved simultaneous recording of ~80,000 neu-
rons (about 80-90% of all neurons) at 1 Hz (Ahrens et al., 2013), later improved to 4 Hz
using electrically tunable lenses (Favre-Bulle et al., 2018). Recent advances include DaXi
microscopy, achieving 3.3 Hz over 0.03 mm?(37.7% of total brain volume, approx. 40,000
neurons), and SCAPE microscopy reaching 25.75 Hz over smaller volumes of 0.00481
mm? (6% total brain volume, approx. 6,000 neurons) (Yang et al., 2022; Voleti et al,, 2019).
More recently, the ZAPBench dataset (Lueckmann et al., 2025) showcased light-sheet
microscopy recording of over 70,000 neurons throughout nearly the entire larval zebrafish
brain at approximately 1 Hz. However, scattered light from the excitation laser is visible
to the fish in all one-photon approaches and can interfere with presented visual stimuli.
Two-photon microscopy uses infrared light that is invisible to the fish, though care must
be taken as fish eyes absorb infrared light, and exposure can be lethal. While two-photon
imaging eliminates visual interference, its main limitation is speed: current two-photon
technology can record 52,000 neurons distributed throughout 80% of the brain's volume
at 1 Hz (Bruzzone et al.,, 2021). However, even with these advances, head-fixed prepa-
rations fundamentally constrain the fish's natural behavior, particularly during complex
tasks like hunting.

Recording neural activity in freely moving zebrafish presents unique technical challeng-
es, as larvae move in rapid bursts reaching speeds of 10 cm/s and angular velocities of
600°/s, i.e., close to 2 revolutions around themselves per second (Johnson et al.,, 2020;
Mearns et al., 2020). These movements require sophisticated real-time tracking to keep
the fish within the microscope's field of view. Higher imaging speeds typically come at
the cost of either reduced spatial resolution or a smaller field of view. Current tracking ap-
proaches either move the stage to cancel the fish's motion (Kim et al., 2017) or use mirror
systems to keep a stationary microscope focused on the fish (Symvoulidis et al., 2017).
Several imaging techniques have been developed, including differential illumination focal
filtering microscopy (DIFF), light field microscopy (LFM), and hybrid approaches combin-
ing LFM with confocal or light-sheet methods (Cong et al., 2017; Zhang et al., 2021). Addi-
tional challenges include calcium indicators being too slow to track rapid neural changes
during behaviors like hunting, and current setups restricting the fish's vertical move-
ments, which are crucial for natural hunting where fish prefer to strike at prey from below
(Bolton et al., 2019; Mearns et al., 2020). Additionally, counteracting the fish's movements
by moving the imaging chamber can significantly alter their behavior, reducing how far,
fast, and often they move (Kim et al., 2017).

Calcium imaging speeds still fall roughly two orders of magnitude behind the fastest
neurons in zebrafish larvae (Lueckmann et al., 2025). Voltage imaging in larval zebrafish
has also made remarkable strides in recent years, bringing the field closer to the goal
of whole-brain voltage imaging at cellular resolution. Innovations in genetically encod-
ed voltage indicators (GEVIs), such as ASAP3-Ky, Voltron2-Kv, and Positron2-Kv, have
significantly improved brightness and signal-to-noise ratio, enabling the detection of
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single action potentials across large populations of neurons. Concurrently, advances in
microscopy, particularly light-sheet techniques like remote refocusing and oblique plane
microscopy, have pushed volumetric imaging rates to over 200 Hz, allowing researchers
to capture cellular-resolution neural activity across approximately 25,000-33,000 neurons
(25-33% of total brain) in head-fixed zebrafish brain even when at maximum firing rates
(Wang et al., 2023), although these techniques are still in active development, with data
from only a single fish presented.

Neurotransmitters and Neuromodulators

Optical approaches for monitoring neurotransmitter dynamics are particularly well-suited
for larval zebrafish given their transparency and accessibility for whole-brain imaging.
Several GENIs have been successfully validated in zebrafish for glutamate (Marvin et

al,, 2013), GABA (Marvin et al., 2019), acetylcholine (Borden et al., 2020), dopamine (Sun
et al,, 2018), noradrenaline (Feng et al., 2019), and ATP (Wu et al., 2021), but developing
sensors for the more than 100 neuropeptides identified in the zebrafish brain (Van Camp
et al., 2016) remains a challenge.

Perturbation

The larval zebrafish represents an attractive model organism for optogenetic perturbation
due to its transparency and amenability to genetic modifications. One-photon opto-
genetic approaches face limitations from light scattering, lack of z-axis resolution, and
unwanted visual stimulation of the fish (Chai et al.,, 2024). Two-photon optogenetics offers
improved spatial precision and reduced scattering (Turrini et al., 2024), though reliable
single-neuron manipulation remains a technical challenge. Current approaches typically
target anatomically defined regions rather than individual neurons, particularly when the
fish is relatively stationary (Chai et al., 2024; Turrini et al.,, 2024). Despite these technical
limitations, optogenetics studies in the fish have led to several discoveries (Piatkevich and
Boyden, 2023), including neural populations and activity patterns responsible for saccadic
eye movements (Schoonheim et al,, 2010), for increasing sleep (Oikonomou et al.,, 2019),
for controlling swim turn direction (Dunn et al., 2016), for providing sensory feedback

to spinal circuits during fast locomotion (Knafo et al., 2017), for producing coordinated
swimming patterns (Ljunggren et al,, 2014), for stopping ongoing swimming (Kimura et al.,
2013), and for contributing to movement in response to noxious stimuli (Wee et al., 2019).
Most recently, Chai et al. developed a system capable of enabling whole-brain calcium
imaging in freely swimming larvae while simultaneously allowing targeted optogenetic
stimulation of specific brain regions during stationary periods (Chai et al.,, 2024). Further
development of tools that permit genetic access to limited populations of neurons would
allow for more specific perturbation of individual populations of neurons.
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Connectomics

Early electron microscopy efforts in larval zebrafish demonstrated the feasibility of
whole-brain imaging through multi-scale imaging approaches. Hildebrand et al. achieved
imaging of an entire larval zebrafish brain and portions of the spinal cord, though at
resolutions insufficient for dense reconstruction (Hildebrand et al., 2017). A significant
advance came with Svara et al., who achieved whole-brain electron microscopy imaging
at synaptic resolution in a 5-day post-fertilization larval zebrafish, enabling tracing of neu-
ral connections across nearly the entire brain except for the retinae (Svara et al., 2022).
Parallel efforts are ongoing, including as part of integrated functional & structural studies
that imaged another whole larval brain (Lueckmann et al., 2025) and as part of work at
the Brain Science and Intelligent Technology Innovation Center of the Chinese Academy
of Sciences, where a team led by Du Jiulin is combining both optical and electron micros-
copy approaches for cellular and synaptic level mapping respectively (Du Jiulin, 2022).
Small pieces of the brainstem (Vishwanathan et al., 2024), hindbrain (Boulanger-Weill et
al., 2025), and spinal cord have also been reconstructed (Svara et al., 2018).

Beyond electron microscopy, expansion microscopy (ExM) has emerged as a powerful
complementary approach, first demonstrated in zebrafish by Freifeld et al., who resolved
putative synaptic connections between fluorescently labeled cell populations (Freifeld et
al., 2017). Subsequent work has revealed detailed protein organization at specific synaps-
es, such as those on Mauthner cells (Cardenas-Garcia et al., 2024). Recent ExM protocols
enable the expansion of intact, several-millimeter-long animals up to 5 dpf while main-
taining compatibility with genetically-encoded protein labeling, providing an essential link
between structure and function by revealing both subsynaptic structures and intricate
signaling pathways throughout the nervous system (Steib et al,, 2023; Behzadi et al,,
2024). While x-ray-based approaches have been demonstrated using synchrotron radia-
tion to achieve cellular resolution (Osterwalder et al., 2021), they have not yet been widely
adopted for neural circuit mapping in larval zebrafish.

The Hildebrand et al. dataset requires approximately 2.7 terabytes of storage across all
resolution levels (Hildebrand et al., 2017). In comparison, the Svara et al. dataset likely re-
quires approximately 15 terabytes of storage (assuming 2 byte per voxel at 7.33 teravoxels,
the size of the current effort is ~11TB at 8 bits) (mapZebrain, 2025). Neuron reconstruction
efforts for the larval zebrafish are ongoing: while automated segmentation and synaptic
detection of the Svara et al. dataset have been completed, comprehensive proofreading
efforts continue to this day and are scheduled to be completed most likely in a few years.
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Computational Modeling

The landscape of larval zebrafish simulation efforts is distinctly shaped by three key
factors: the current absence of a fully reconstructed connectome; its relative novelty as a
brain simulation model organism in computational neuroscience compared to C. elegans;
and the optical transparency of its brain, making whole-brain calcium imaging data read-
ily accessible. These characteristics have led to simulation approaches that are generally
not whole-brain, not connectome-constrained, and revolve around functional data as the
key to model fitting and validation.

Vishwanathan et al., 2024

Vishwanathan et al. implemented a highly simplified linear rate model as a proof of
concept for connectome-constrained circuit simulation in larval zebrafish. It was based
on a reconstructed 0.0024 mm? brainstem volume (approximately 2.4% of the total brain
volume) containing circuits involved in oculomotor and velocity-to-position integration
(Vishwanathan et al., 2024). Based on the identified ~3,000 neurons and ~75,000 syn-
apses, they derived a directed graph weighted by synaptic counts between neurons, with
weights normalized by the total synaptic input to each postsynaptic neuron and with prior
physiological studies of neurotransmitter identities and anatomical mapping of circuit
components used to constrain the model further.

Model validation leveraged previously collected two-photon calcium imaging data from
20 different larval zebrafish, combined with simultaneous eye position recordings. The
validation focused on two key aspects of oculomotor integration: how neuron firing rates
correlated with eye position during fixations, and how neural activity changed following
rapid eye movements. For each neuron population, the authors compared how strongly
neurons respond to eye position changes in the model versus experimental measure-
ments from calcium imaging across 20 different zebrafish - the model, despite being
based on a single specimen’s connectivity, correctly predicted the characteristic distribu-
tion of position sensitivities for each population.

Liu et al., 2024

simZFish, developed by Liu et al., combines an embodied model that bridges sensory
processing, neural control, and biomechanics to reproduce behavior. It is based on their
previous behavioral and calcium imaging recordings of the optomotor response - a be-
havior where fish adjust their swimming to maintain position when their entire visual envi-
ronment appears to move around them (Liu et al,, 2024; Naumann et al., 2016). The model
was fit using data from their 2016 work, where they identified distinct neural types in the
pretectal circuit by analyzing calcium imaging recordings from 3,070 neurons across 12
fish, characterizing their firing patterns during visual stimulation, and establishing their
functional connectivity through analysis of concurrent behavioral recordings from 38 fish.
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This characterization was used to initialize a simplified, biologically inspired rate-coding
network. In such networks, a common approach in computational neuroscience, the de-
tailed spiking activity of individual neurons is not simulated. Instead, a large population of
similar neurons is often abstracted as a single computational node (or unit). The activity
of this node is then characterized by a single, continuous time-varying signal repre-
senting the average firing rate of that entire population. These rate-based units, whose
outputs are these average firing rates, then interact with each other to form the network.
This contrasts with the more granular, single-neuron spiking models that are a primary
focus of other sections in this report. While this rate-coding neural simulation formed the
control system, the model’s key contribution lies in its detailed biomechanical implemen-
tation, comprising seven body segments with realistic hydrodynamics and a virtual visual
system with two cameras mimicking the fish's eyes.

The model underwent comprehensive validation through multiple approaches: behavioral
analysis comparing simulated and real fish responses to visual stimuli, comparison of arti-
ficial neural activity patterns to calcium imaging recordings, and finally, implementation in
a physical robot tested in both controlled and natural environments. Both the simulation
and the robot - see some of the videos from Liu et al. (Liu et al.,, 2024) - demonstrated
the ability to maintain position in moving water through visual input alone.

Immer et al., 2025

Lueckmann et al. developed a black-box machine learning model trained on approxi-
mately two hours of 1 Hz calcium recordings from the ZAPBench dataset (Lueckmann et
al., 2025), which captures the activity of approximately 70,000 neurons across the whole
brain (2048 x 1152 x 72 voxels at 406 nm x 406 nm x 4 um resolution, likely 70-80% of all
neurons of the organism) from a single head-fixed but tail-free larval zebrafish during nine
different behavioral tasks. The recordings were obtained using light-sheet microscopy
while the fish was exposed to various visual stimuli, including forward-moving gratings
to test gain adaptation, random dot patterns for decision-making, alternating light/dark
flashes for startle responses, asymmetric illumination for phototaxis, and various other
motion patterns to probe turning behavior and positional homeostasis. The fish'’s tail
movements were monitored throughout the experiments via electrical recordings from
motor nerves. This allowed real-time coupling between the fish's attempted swimming
behavior and the visual stimuli presented (Immer et al., 2025).

Unlike traditional approaches that first segment individual neurons and extract their
activity traces, this method worked directly with the raw volumetric video data to predict
future frames of brain-wide activity. The authors implemented a 4D UNet architecture
operating on three spatial dimensions plus time, trained end-to-end to minimize the mean
absolute error between predicted and actual (voxel-based) calcium traces. The model
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was trained on approximately 1.4 hours of data (70% of the full 2-hour recording) span-
ning eight different behavioral conditions, with performance evaluated on held-out test
segments from these conditions and a completely held-out ninth condition. Attempts to
improve performance through pre-training on data from two other specimens proved un-
successful. While these initial attempts at pre-training on data from two other specimens
were unsuccessful, this single outcome on a new benchmark with few baselines offers
limited insight into the ultimate viability of transfer learning across individuals, which
remains a promising avenue for future exploration.

When validated against held-out recordings, the model achieved higher prediction
accuracy for short temporal contexts, though it showed comparable performance to
trace-based approaches when using longer temporal contexts. In completely held-out
experimental conditions, the model demonstrated better generalization for one-step-
ahead predictions than for longer forecast horizons. Successful prediction, at least when
defined in terms of mean absolute error, thus remains a challenge for trace-based and
video-based models, especially with longer temporal contexts. Importantly, this particu-
lar modeling approach focuses solely on predicting voxel-level neural activity from past
activity and does not incorporate embodiment; it has no simulated body or environment
to interact with, nor does it directly model how sensory inputs (like the visual stimuli pre-
sented to the fish) translate into neural activity or how neural activity translates into motor
outputs (like tail movements).

While this work demonstrates the feasibility of purely ML-based approaches to neural ac-
tivity prediction in Zebrafish larvae, the main challenge remains sample efficiency. These
models lack biological priors constraining their predictions, and they require substantially
more data to learn effectively. Importantly, the authors have made this valuable data-

set publicly available in a convenient format. Future work will likely focus on improving
sample efficiency through better architectures and finding ways to leverage data across
individuals through cross-specimen pre-training. The connectome for this exact fish is
expected to be released in a year or so, thus enabling a variety of approaches that incor-
porate serious biological priors.
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Gap Analysis

The larval zebrafish represents a unique convergence of experimental tractability and biological
sophistication, making it a unique target for integrated brain emulation efforts. While larval zebrafish
have minimal clinical / industrial utility, success in fully modeling a vertebrate brain could broadly

validate whole-brain emulation efforts.

y.:I8-8 Model Organism Overview: Larval zebrafish

Model Organism Pros Cons

Overview: Larval

zebrafish

Anticipated Scientific Similarity to Mammalian Brain Structure and Physiology: Spiking Developmental & Inter-individual Variability: The rapid development of larval zebrafish brains

Insights neurons, layered structures, more pronounced plasticity - offering

richer testbeds than C. elegans.

High-Resolution Structure - Function Mapping: Near-whole-brain
calcium/voltage imaging can be paired with EM or ExM for synaptic-lev-
el detail, enabling correlational and causal studies.

Diverse behaviors even in larvae: Prey capture, startle, and associa-
tive learning make the modeling of somewhat sophisticated behaviors
theoretically possible.

Experimental
Tractability

Strong & Growing Community: Active consortia, open resources (at-
lases, transgenic lines), imminent first vertebrate connectome release.

Feasibility-Complexity Sweet Spot: ~100k neurons with vertebrate
circuitry and small enough for near-complete connectomics and whole-
brain imaging.

Manageable Scale & Cost: Smaller facility/outlay than rodents, feasi-
ble HPC demands for ~100k neurons, and simpler housing.

Whole-Brain Perturbation Feasibility: Structure-informed whole-brain
optogenetics with full-brain imaging is realistic, potentially enabling
systematic “perturbation atlases.”

ty/“personality” and behaviors are limited (Roberts et al,, 2013).

(typically studied at 5-7 days post-fertilization) creates significant registration challenges, as small age
differences of days or even hours can lead to substantial physiological and structural changes This
complicates efforts to create a “standard” reference connectome and hinders long-term studies. It also
raises questions about circuit stereotypy across individuals.

Ecological Validity Gaps: 3D naturalistic behaviors (e.g., full hunting, social interaction) are hard to
record at high spatiotemporal resolution, raising questions about real-world relevance.

Somewhat limited behavioral repertoire for advanced cognitive functions: At the age where typical
whole brain recordings are performed (~5-6 days post fertilization), memory formation, individuali-

No Standardized Pipeline: No universal protocol for connecting imaging, connectomics, and behavioral
data from the same specimen.

Time-Limited Transparency: Beyond ~7-14 days, reduced optical clarity and morphological changes
hinder long-term/adult study (though special lines can maintain transparency).

Molecular Tool Gaps: Rapid larval development complicates viral barcoding or extended protein-ex-
pression protocols; the genetic toolkit for barcoding is relatively underdeveloped compared to other
model organisms. Cell-type specific genetic access tools still need substantial development.

Current Proofreading Bottleneck: While the first EM connectome completion is expected within 1-2
years, manual validation limits availability.

Perturbation Coverage: Systematic perturbation of all ~100,000 neurons remains intractable within the
brief larval stage.
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Gaps and Opportunities: Larval Zebrafish

Gaps and Gaps (non-exhaustive selection) lllustrative Project Opportunities

opportunities:

Larval Zebrafish

Neural dynamics Limited Functional Data: Current imaging techniques face fundamental trade-offs between Extended ZAPBench 2.0: Expand current whole-brain calcium imaging efforts to include

spatial coverage and temporal resolution. One-photon light-sheet microscopy can image
nearly all ~100,000 neurons but only at 1-4 Hz, while faster techniques like SCAPE microsco-
py (up to ~25 Hz) or voltage imaging (millisecond-scale) achieve higher temporal resolution
at the cost of observing less than 10% of the brain. No current method achieves both whole-
brain coverage and spike-timing resolution simultaneously.

Behavioral Recording Constraints: Most high-resolution neural recordings rely on head-
fixed preparations that restrict natural behavior. While recent advances enable tail move-
ment in virtual environments or use mirror-based tracking systems for freely moving fish,
these methods compromise either spatial or temporal resolution. Current setups particularly
struggle with complex three-dimensional behaviors like hunting, limiting the ecological
validity of collected neural data.

Scarce data on neuromodulation: Very limited data exist on the effect of different neuro-
modulators in larval zebrafish.

recordings from more individuals and simultaneous high-resolution behavioral tracking
(tail kinematics, eye movements) in head-fixed preparations.

Whole-Brain Calcium / Voltage Imaging Scale-up: Increase the imaging rates and
coverage of calcium and voltage imaging, ideally in freely behaving individuals.

3D Unrestricted Swimming Microscopy: Develop imaging systems specifically
addressing the vertical movement limitation in current setups, enabling natural hunting
behaviors where fish strike from below.

Comprehensive Perturbation Atlas: Systematic optogenetic perturbations with whole-
brain activity recording. Map circuit-wide effects of activating/inhibiting defined neuron
populations during specific behaviors.

Connectomics

Reconstruction Bottlenecks: Although automated segmentation and synaptic detection
of the Svara et al. dataset are complete, comprehensive proofreading remains ongoing.
The scale of manual intervention required for accurate proofreading continues to delay the
availability of a fully reconstructed connectome.

Molecular Information Limitations: EM datasets provide primarily morphological and
connectivity information, in addition to limited data to distinguish excitatory vs. inhibitory
neurons, lacking crucial details about neurotransmitter identities and receptor distributions.
While expansion microscopy (ExM) could enable structural mapping and molecular annota-
tion, no comprehensive whole-brain ExM effort has been completed in zebrafish.

Lack of neuroplasticity datasets: No substantive neuroplasticity datasets exist.

Transgenic Barcoding Feasibility Study: Develop rapid expression strategies for molec-
ular barcoding compatible with larval stage timing.

Whole-Brain ExM with Molecular Profiling: Create a comprehensive expansion micros-
copy dataset with molecular annotations at synaptic resolution.

10x the connectome data, including brain and spine, to better understand different
stages and interindividual differences.

Computational
Neuroscience

Limited Experimental Electrophysiological Data: Similar to C. elegans.

Missing Structural Foundation: The absence of a fully proofread connectome forces
whole-brain models to rely primarily on functional data or partial circuit reconstructions.

Even when structural data exists, it lacks crucial molecular information about neurotransmit-

ter types and receptor distributions.

Immature Model Development: Existing whole-brain models are few and currently lack
detailed biophysical implementation. The lack of systematic perturbation data (e.g, compre-
hensive optogenetic studies) further complicates model validation.

Port OpenWorm to the Larval Zebrafish: Collaborate with OpenWorm on shared infra-
structure (3D environments, databases with receptors, etc.)

Connectome-Constrained Biophysical Simulator: Build pilot-level compartmental
models using the current version of the larval zebrafish whole-brain connectome and
available ephys patch-clamp recordings.

Embodied ML Models of Zebrafish Behavior: Develop physics-based differentiable
simulation environments and train biophysical models supporting auto differentiation to
replicate specific behaviors (hunting, escape responses) using zebrafish behavioral data.
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Drosophila

Anatomy & Behavior

The development of Drosophila melanogaster proceeds through four stages: egg, larva,
pupa, and adult. The larval stage represents the primary growth period, with a ~200-fold
increase in body mass (Church and Robertson, 1966) and brain expansion from approxi-
mately 10,000 neurons (Jiao et al., 2022) to roughly ~130-140,000 neurons in adults. Adult
flies at day 7-15 measure 2.5-3 mm in body length and approximately 2 mm in width, with
males slightly smaller than females. Under laboratory conditions at 25°C, their mean lifes-
pan typically ranges from 25 to 75 days for females and 25 to 85 days for males. However,
this can vary significantly depending on factors like genetics and environment (Lints et
al., 1983). The adult nervous system consists of two main parts: the brain and the ventral
nerve cord (VNC). The male CNS occupies about 0.054 mm? (Berg et al.,, 2025), of which
roughly 75% (~0.04 mm?®) corresponds to the brain - including the central brain and optic
lobes - and about 25% corresponds to the VNC (Janelia, 2023). The adult brain contains
~130-000 (Dorkenwald et al., 2024) to ~140,000 neurons (Berg et al., 2025), while the male
VNC contributes ~33,000 neurons within a ~166,000-neuron CNS (Berg et al., 2025). All
neural structures are enclosed by the cuticle - a multilayered exoskeleton partially trans-
parent to visible light and transparent to infrared wavelengths (Hsu et al.,, 2018) - and are
oxygenated by the tracheal system, a network of air-filled tubes that branch progressively
finer until directly contacting brain tissue.

Neuronal firing rates in Drosophila are diverse. For example, while some sensory neurons
fire spontaneously at only 1-2 Hz, others can exceed 200 Hz in response to stimuli (de
Bruyne et al., 2001, Dweck et al., 2023). However, the brain's overall energy budget limits
the average network activity. While comprehensive empirical data on typical, whole-brain
average in-vivo firing rates in Drosophila are currently scarce, we can perform a highly
approximate, illustrative calculation to explore this metabolic constraint. We come up with
a rough estimate of this limit using the measured resting brain oxygen consumption rate
of ~160 pmol O2/min (Neville et al,, 2018), which translates to a total resting ATP budget
of ~51x 10" ATP/sec (assuming standard energy conversion factors: ~450 kJ/mol 02
oxycaloric equivalent, ~35% metabolic efficiency, ~50 kJ/mol ATP hydrolysis energy).
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Distributing this budget across ~140,000 neurons using an estimated cost per spike of ~9
x 10° ATP, calculated for a hypothetical action potential in a related blowfly neuron'’s axon
(Laughlin et al., 1998), yields a maximum average firing rate of approximately 4 Hz. This
theoretical upper bound neglects significant synaptic and resting potential energy costs,
meaning the actual sustainable average rate is likely lower.

Drosophila melanogaster displays many behaviors (Kohsaka, 2023; Caldwell et al., 2003).
Larvae show movements like crawling forward and backward, sweeping their head, or
rolling over (Kohsaka, 2023; Clark et al., 2018; Caldwell et al., 2003). Sensory feedback
modulates these movements, allowing larvae to respond to light, physical obstacles, and
food availability (Clark et al., 2018; Busto et al., 1999). Adult Drosophila engage in various
behaviors, including walking, running, grooming, aggression, mating, and flying. Automat-
ed postural analysis has defined over 100 distinct behavioral states (Berman, 2014), with
undoubtedly more to be defined in social encounters or the natural environment. Adult
flies exhibit a substantially more complex range of movements than C. elegans or larval
zebrafish, such as rapid banked turns (body saccades) during flight, which help minimize
motion blur and avoid collisions (Mujires et al., 2015).

Fruitfly Behavior

Fighting A male fruit fly is courting a female Social mating behavior
fruit fly.

4:20

4

[link goes here] [link goes here] Watch on YouTube

I can’t find these two links.
Could you send them to me?
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Drosophila demonstrates notable capabilities for learning, memory, and communication.
It can habituate to repeatedly presented stimuli (a form of non-associative learning),

form aversive courtship memories after rejection, and recall outcomes of past aggressive
encounters (Durrieu et al,, 2020; Zhao et al., 2018; Yurkovic et al., 2006, YouTube Video).
Social learning also appears in mate choice, foraging decisions, and predator avoidance,
with individuals copying behaviors observed in their peers (Kacsoh et al., 2018; Battesti et
al., 2012). Additionally, even genetically identical flies display stable idiosyncratic “person-
alities” - for example, consistent left- or right-turning biases and phototactic preferences
that persist for days (de Bivort et al., 2022).

Social behavior is another major facet of Drosophila's ethology and includes aggression,
territory defense, and group formation (Monyak et al.,, 2021; Schretter et al., 2020). Both
males and females exhibit aggression, although intensity and tactics differ based on

sex and experience - males typically engage in higher-intensity boxing and fencing. In
contrast, females display more subtle aggressive behaviors (Zwarts et al.,, 2012, YouTube
video). In some species, territoriality is more pronounced, with males defending leaves or
fruit patches, whereas in Drosophila melanogaster, territorial claims tend to be conditional
and triggered by factors like female presence or food resources (Zwarts et al., 2012; White
et al,, 2015). Flies also gather on food sources in aggregations that may improve foraging
efficiency and promote social information sharing (Philippe et al., 2016), while maintain-
ing individual spacing that adjusts with density and social context (McNeil et al., 2015).
Courtship in Drosophila involves an intricate behavior sequence that showcases their
social communication capabilities. Males perform elaborate courtship rituals, including
following, wing vibration to produce species-specific songs, tapping, and attempted cop-
ulation (Pavlou et al., 2013). The courtship song, produced by precisely controlled wing
vibrations, contains specific patterns of pulses and sine waves that are crucial for species
recognition and female choice. These acoustic signals work with chemical cues - males
detect female pheromones through specialized receptors, while females evaluate male
quality through acoustic and chemical signals (Fernandez et al,, 2013; Lillvis, 2024). The
successful integration of these multimodal cues - acoustic, chemical, and behavioral -
determines mating success and helps maintain species barriers (Dweck et al., 2015).

Finally, internal states and social context further influence these behaviors. Isolation can
heighten aggression, disrupt sleep and change locomotor activity, suggesting that Dro-
sophila depends on social cues for regulating stress and energy balance (Eddison., 2021;
Li et al,, 2021). After mating, females temporarily become non-receptive and increase egg
production, a shift mediated by seminal fluid proteins (Mackay et al., 2005). Temperature
preferences also depend on feeding status - hungry flies often choose cooler tempera-
tures, while sated flies gravitate toward warmth (Umezaki et al., 2024). Crowding trig-
gers further behavioral changes, with flies drawing on a sense of “group size” to modify
spacing, movement, and interactions (Rooke et al., 2020). These findings highlight how
Drosophila's behavioral repertoire is highly plastic, shaped by physiological, environmen-
tal, and social factors.
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Neural dynamics

VIR EN Overview of the optical neural recording landscape in Drosophila

Radar plots based on the optical recording literature cited in the report. We plot the following dimensions of brain
recordings: spatial resolution, brain volume, temporal resolution, and (estimated) individual and cumulative record-
ing duration. Only recordings from fixated (A) and no freely moving experiments. The outer ring is normalized to the

maximum known values. Each ring represents one order of magnitude. The data for this figure is available in the
linked data repository.
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Neural activity recording

Calcium imaging of small populations of neurons, or all the neurons within a brain region
is routine and facilitated by the wealth of genetic tools available in Drosophila. The Dro-
sophila brain's small size and partial transparency suggest the feasibility of whole-brain
imaging (i.e., of all neurons of EEEZINERRINGE) at single-neuron resolution.

In practice, however, the presence of air-filled tracheae creates significant challenges
through different mechanisms: for single-photon imaging, light scattering is the primary
limitation, while for multiphoton approaches, optical aberrations from the tracheae are
the dominant obstacle (Hsu et al,, 2018). Indeed, while two-photon microscopy can image
at depths of 600-800 um in mouse brain tissue (Xu et al., 2024), it often struggles with
imaging depths beyond about 0.1 mm in Drosophila when attempting to image through
the intact cuticle or with minimally invasive preparations, largely due to air-filled tracheae.
However, with more invasive preparations involving cuticle and superficial trachea remov-
al, functional 2P imaging depths of 120-245 um (Aragon et al., 2022; Brezovec et al., 2024)
have been demonstrated. Single-neuron resolution in adult Drosophila is also intrinsically
challenging because somata are somewhat smaller than in other model organisms. In-
deed, typical central brain neurons have soma diameters of 2-6 um, and mushroom body
Kenyon cells are only ~2-3 um across and densely packed in clusters (Tuthill, 2009; Gu et
al., 2006).

In head-fixed preparations, current techniques navigate these challenges through differ-
ent trade-offs: light field microscopy achieves fast (~100Hz) imaging of a large portion
(600 x 300 x 200 um3, about ~90% of an assumed 0.04mm? brain tissue volume) of the
brain, though at resolution insufficient to identify individual cells (Aimon et al., 2019).
Schaffer et al. used swept confocally-aligned planar excitation (SCAPE) microscopy to
image the dorsal third of the Drosophila brain (450 x 340 x 150 um?, about ~57% of the
assumed brain volume) at single-cell resolution at 8-12 Hz, though scattering and aberra-
tions make resolving individual neurons in deeper brain structures difficult (Schaffer et al.,
2023). This amounted to approximately 1,500 neurons being imaged. Two-photon micros-
copy offers superior penetration power, but its point-scanning nature creates an inherent
trade-off between imaging speed and volume coverage - although advances like light
beads microscopy may permit significantly faster imaging (Demas et al,, 2021). Indeed,
Gauthey et al. recently demonstrated this potential by achieving whole-brain imaging
(e.g., 295 x 675 x 235 um?, whole brain by bonding box volume) at 28 Hz in preparations
where tracheae were surgically removed (Gauthey et al.,, 2025). This approach, with a
spatial resolution of ~1x 1x 10 um, was able to capture fast-timescale auditory respons-
es missed by standard volumetric imaging and could even be pushed to 60 Hz for the
central brain alone. Recent work has pushed these limits by imaging the brain (~665 x
333 x 245 um?, whole brain by box volume) at 1.8 Hz in preparations where the cuticle and
superficial trachea were removed (Brezovec et al., 2024).
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Overcoming the significant optical challenges posed by air-filled tracheae is an important
step towards achieving comprehensive whole-brain imaging in Drosophila at single-neu-
ron resolution. Several strategies show promise for mitigating these tracheal effects.
Three-photon microscopy is one such avenue due to its inherent advantages in reducing
scattering and aberrations (Hsu et al., 2019), though it often faces trade-offs with imag-
ing speed. Other approaches, including advancements in light-sheet techniques (like
SCAPE or light beads microscopy), the development of improved dissection preparations
or optical window techniques that minimize tracheal interference (Aragon et al,, 2022;
Brezovec et al., 2024) also offer potential solutions. The goal of these ongoing efforts is to
enable consistent, whole-brain functional imaging at single-cell resolution and behavior-
ally relevant speeds. However, simultaneously achieving optimal depth, speed, resolution,
and minimal invasiveness across the entire brain remains a significant technical hurdle. It
is worth noting, though, that such advanced imaging may not be strictly required. In-
deed, research in Drosophila has typically emphasized specific neural circuits rather than
whole-brain imaging, in which defined neural populations express calcium indicators. For
imaging of large populations of neurons, researchers generally prefer imaging neuropil
despite sacrificing single-cell resolution because it enables consistent registration be-
tween specimens. However, structural imaging and reconstruction of the same specimen
after functional recording could enable a different approach: imaging the neural cell bod-
ies that form an outer “rind” around the Drosophila brain. This would provide single-cell
resolution data while avoiding the need to penetrate deeply through the problematic
tracheal system, potentially achieving close to whole-brain functional imaging with 1- or
2-photon approaches (Harris et al., 2015).

Neural recording capabilities are more limited in freely moving or flying Drosophila.
Two-photon calcium imaging systems compatible with tethered preparations have been
developed (Seelig et al,, 2011) and successfully used to record from small numbers of
neurons, such as 4-5 pairs of descending neurons (Schnell et al.,, 2017), during wing flap-
ping and steering behaviors that closely mimic natural flight. However, these techniques
remain restricted to highly constrained experimental conditions.

Another key challenge is achieving sustained recordings over behaviorally-relevant times-
cales. Several innovative approaches have recently emerged to tackle this challenge.
Huang et al. developed a cranial window preparation that allows repeated imaging ses-
sions over up to 50 days by using laser microsurgery to create and then reseal an optical
window in the cuticle (Huang et al., 2018), while Aragon et al. demonstrated continuous
two-photon imaging through the intact cuticle for up to 12 consecutive hours, though this
was limited to bright, superficial neurons (Aragon et al., 2022). Most recently, Flores-Valle
et al. achieved long-term calcium imaging by collecting 30-second recordings every 5
minutes over 7 days. This intermittent imaging strategy allowed them to accumulate over
15 hours of calcium imaging throughout the week-long experiment (Flores-Valle et al.,
2022). These long-term imaging approaches are, however, typically focused on recording
from small numbers of neurons, prioritizing stability and duration over coverage.
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Progress is also being made in voltage imaging, where several genetically encoded volt-
age indicators have been applied to Drosophila brain imaging, including ArcLight, ASAP,
Ace2N-mNeon, Varnam, and, more recently, Voltron (Jin et al., 2012; Yang et al., 2016;
Gong et al,, 2015; Kannan et al,, 2018; Abdelfattah et al., 2019). Using light field microscopy
with the ArcLight indicator, Aimon et al. achieved fast (200 Hz) voltage imaging across a
considerable portion of the brain at subcellular resolution, though with fewer extractable
activity components compared to calcium imaging due to lower signal-to-noise ratios
(Aimon et al., 2019). Indeed, voltage imaging faces even greater technical challenges than
calcium imaging due to poorer signal-to-noise ratios, and the same limitations regarding
imaging depth and resolution apply.

Neurotransmitters and Neuromodulators

Several GENIs have been successfully validated in Drosophila, including sensors for
acetylcholine (Jing et al,, 2018; Borden et al., 2020), dopamine (Sun et al., 2018; Sun et al.,
2020), and serotonin (Wan et al., 2021). A 2009 review identified 119 predicted neuropep-
tide precursor genes in Drosophila, with 46 neuropeptides biochemically confirmed from
just 19 of these precursors (Clynen et al.,, 2009); more recent work suggests approximate-
ly 50 neuropeptide precursor genes and a similar number of peptide GPCRs (Nassel &
Zandawala, 2019). In any case, significant progress remains to be made in developing
tools to monitor these neuropeptides’ dynamics in vivo.

Perturbation

The adult fruit fly represents an attractive model organism for perturbation studies, hav-
ing a well-characterized connectome, a relatively small number of neurons (~140,000),
and an extensive genetic toolkit for targeted manipulation. Single-photon optogenetic
stimulation using red-shifted opsins like Chrimson is most commonly used in Drosophila,
as these wavelengths can penetrate the cuticle without requiring dissection (Klapoetke et
al., 2014). Likewise, individual neurons can easily be optogenetically silenced in behaving
flies (Mohammed et al., 2017). The powerful genetic toolkit available represents perhaps
the strongest aspect of Drosophila neuroscience. The split-Gal4 system enables precise
targeting of specific cell types, often achieving single-cell-type resolution that surpass-
es capabilities in other model organisms (Meissner et al., 2025). This genetic specificity,
combined with high-throughput behavioral analysis, allows systematic investigation of
neural function across the brain. Upon identification of a neuron of interest, the availabili-
ty of the connectome and of existing tools permits identification and testing of the role of
specific neurons upstream and downstream of that neuron (Meissner et al., 2025). Indeed,
these genetic tools have revealed neural populations and activity patterns responsible for
a wide range of Drosophila behaviors (Piatkevich and Boyden, 2023): acquired feeding
preferences (Musso et al.,, 2019), chemotactic navigational decision-making (Hernan-
dez-Nunez et al., 2015), courtship control (Seeholzer et al., 2018), sleep promotion and
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locomotor activity suppression (Guo et al.,, 2016), long-lasting internal states in the female
brain that regulate multiple behaviors (Deutsch et al., 2020), touch signal processing (Tut-
hill and Wilson, 2016), context-appropriate walking programs (Bidaye et al., 2020), com-
plex behavioral sequences (Vogelstein et al., 2014), and heading direction representation
through ring attractor dynamics (Kim et al,, 2017).

Notably, while the recently reconstructed FlyWire connectome provides a complete map
of anatomical connections, it does not directly reveal how strongly neurons affect each
other’s activity in vivo. Pospisil et al. propose that perturbation studies could enable re-
covery of the "effectome” - a quantitative model of the causal interactions between neu-
rons during brain function (Pospisil et al., 2024). Their key insight is that while studying all
possible pairwise interactions between 140,000 neurons would be intractable, the con-
nectome’s extreme sparsity (only 0.01% of neuron pairs form synaptic contacts) provides
a powerful prior: neurons without direct anatomical connections are unlikely to have
substantial direct causal effects on each other.

cover the fly's "effectome,’ by about four orders of magnitude (~10ggiells)RIR{aIE=Tolelfo Tl s kS
sparsity assumption holds.

Connectomics

Synaptic resolution electron microscopy efforts in Drosophila achieved an early milestone
in 2015 with the complete imaging of a female first instar larva nervous system (Ohyama
et al,, 2015), followed by another significant advance in 2018 with the complete imaging
of an adult female fly brain using a custom high-throughput serial-section transmission
electron microscopy (ssTEM) platform (Zheng et al, 2018). This was followed by focused-
ion-beam scanning electron microscopy (FIB-SEM) imaging of the female hemibrain
(Scheffer et al, 2020). Subsequent efforts also mapped the female (Azevedo et al., 2024)
and male (Takemura et al.,, 2024) ventral nerve cords from different individuals. Signifying
a major step towards holistic maps from single specimens, imaging acquisition has now
also been completed for an entire adult male CNS (Berg et al., 2025)- a Janelia FlyEM
project in collaboration with the Cambridge Drosophila Connectomics Group - and for
an entire adult female CNS as part of the BANC project (FlyWire Blog, 2024). These
initiatives provide the raw data for comprehensive structural maps of individual nervous
systems.

Beyond electron microscopy, expansion microscopy (ExM) has emerged as a comple-

mentary approach for Drosophila connectomics. When coupled with lattice light-sheet
microscopy, ExM has enabled the comparison of neural circuit connectivity across
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multiple specimens while preserving molecular contrast information (Gao et al., 2019).
This protein-specific molecular labeling capability has been further enhanced through
transgenic approaches like Bitbow, which enables combinatorial protein barcoding

to label neurons uniquely. By targeting five spectrally distinct fluorescent proteins to
three subcellular compartments (membrane, nucleus, and Golgi apparatus), Bitbow has
demonstrated the ability to generate up to 32,767 distinct molecular barcodes for study-
ing neural circuits in the fly brain (Li et al., 2021). Most recently, advances in expansion
microscopy using potassium acrylate-based hydrogels have achieved expansion ratios
exceeding 40x, enabling light microscopy visualization of features like mitochondria with-
in presynaptic compartments at resolutions approaching those of electron microscopy
while maintaining whole-brain coverage (Tian et al., 2024). X-ray-based techniques also
offer another avenue for large-volume imaging, with X-ray holographic nano-tomography
(XNH) achieving 140-170 nm resolution across millimeter-scale volumes of Drosophila
nervous tissue (Kuan et al., 2020).

Assuming a brain volume of 0.04 mm?®, imaging at 10 nm isotropic resolution would the-
oretically generate approximately 4 x 10" voxels. At 1 byte per voxel for a single channel,
this would require approximately 40 terabytes of storage per channel.

The progression of Drosophila neuron reconstruction reflects advancing capabilities in
automatic neuron tracing and machine-assisted reconstruction proofreading. The initial
complete brain imaging by Zheng et al. demonstrated feasibility with a proof-of-con-
cept reconstruction of 120 neurons, with reconstruction requiring, on average, 11.2 per-
son-hours per neuron (Zheng et al.,, 2018). This was followed by a significant improvement
in the hemibrain project (Scheffer et al., 2020), which reconstructed over 22,000 neurons
and 20 million synapses using automated segmentation supplemented by an estimated
50-100 person-years of human proofreading. The recent FlyWire achievement (Dorken-
wald et al,, 2021, Dorkenwald et al., 2024) represents another leap forward, reconstruct-
ing the central brain containing 140,000 neurons and over 50 million synapses with 33
person-years of human proofreading, bringing down proofreading time to 19 minutes

per neuron (Dorkenwald et al., 2021). Beyond just the central brain, Azevedo et al. recon-
structed approximately 15,000 neurons and 45 million synapses in the ventral nerve cord
(Azevedo et al., 2024), and a fully proofread connectome of an entire adult male CNS has
been released (Berg et al., 2025). Further datasets covering the entirety of the fly’s central
nervous system are imminent, with the BANC project, also aiming to reconstruct the
entire CNS of a single specimen, expected to require several years to complete neuron
reconstruction and proofreading (FlyWire Blog, 2024).
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Computational Modeling

The relative abundance of connectomics data has profoundly shaped Drosophila brain
emulations, from earlier partial reconstructions in FlyCircuit to the recent release of a full
adult connectome. This detailed structural knowledge has enabled increasingly compre-
hensive models, from circuit-specific implementations to whole-brain simulations at-
tempting to capture system-wide dynamics.

Huang et al., 2019 and Higuchi et al., 2022

Before a full connectome became available, a few efforts sought to model the whole Dro-
sophila brain by inferring connectivity from the partial FlyCircuit database (Chiang et al.,
2011). For instance, Huang et al. and Higuchi et al. developed simulations based on ~14-
15% of the fly's neurons, employing methods like spatial proximity to estimate connec-
tions from morphological data (Huang et al., 2019; Higuchi et al., 2022). These groups ad-
opted various modeling approaches: Huang et al. used simplified leaky integrate-and-fire
neurons, while Higuchi et al. implemented biophysically detailed Hodgkin-Huxley models,
comparing simulated activity to experimental data and known circuit behaviors. Lacking
a complete connectome, these early whole-brain models had limited predictive power
for the detailed activity of specific neurons or circuits, a challenge subsequent connec-
tome-based models aimed to address.

Lappalainen et al., 2024

Another influential example of Drosophila modeling leveraging partial connectomics data
came from Lappalainen et al,, who developed a “differentiable mechanistic network”
(DMN) constrained by anatomical connectivity (Lappalainen et al., 2024). Their approach
combined two electron microscopy datasets spanning different regions of the optic lobe.
This connectivity data was complemented by transcriptomics to infer synaptic signs
based on neurotransmitter expression, resulting in predictions for both excitatory and
inhibitory connections. Since the fly's visual system is organized in repeating columns of
similar neural circuits (akin to a convolutional neural network), they used their detailed
reconstructions of a small region to build a larger model spanning approximately 45,000
neurons across 721 columns of the central visual field. The team trained their model to
detect visual motion using synthetic visual inputs, converting frames from the Sintel

film database (Butler et al., 2012) into hexagonal arrays of photoreceptor activations that
matched the fly's eye structure. Type-specific parameters like membrane time constants,
resting potentials, and unitary synapse strengths (a scaling factor for each type-to-type
connection, applied to the anatomically measured synapse counts) were optimized for
motion detection, specifically, to predict the direction and speed of movement for each
point in a visual scene.
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Each neuron was treated as a leaky, non-spiking node, with graded synapses encoding
excitatory or inhibitory interactions based on known transmitter identities. To translate
the network’s neural activity into motion predictions, they used a convolutional neural
network that took the activity of a subset of neurons as input and produced estimates

of movement direction and speed. Model validation involved comparing these motion
predictions against ground truth from the Sintel database, alongside testing whether the
model reproduced known properties of the fly visual system (e.g., ON/OFF selectivity, T4/
T5 direction tuning) established by prior experimental studies. Although training success-
fully reproduces core visual computations, ablation analyses revealed strong dependence
on correct synaptic signs and connectome structure, underscoring the importance of
biologically grounded constraints.

Shiu et al., 2024

The release of the Flywire reconstruction of the adult Drosophila brain connectome
(Dorkenwald et al., 2024) enabled a new generation of simulations characterized by both
whole-brain coverage and connectome-derived structure constraints. Shiu et al. devel-
oped one of the first comprehensive models incorporating this data, working with over
127,400 proofread neurons and their 50-plus million synaptic connections (Shiu et al.,
2024). To assign neurotransmitter identities, they leveraged prior large-scale predictions
(Eckstein et al., 2024), broadly classifying neurons as excitatory (primarily cholinergic) or
inhibitory (GABAergic or glutamatergic). Dopaminergic, octopaminergic, and serotoner-
gic neurons were also incorporated and treated as excitatory. Connection weights were
derived directly from the Flywire connectome, with sign determined by the assigned
neurotransmitter identity. The model required fitting only a single free parameter - the
global synaptic weight scale (Wsyn). This global scaling factor parameter determined
how strongly each synapse influenced the postsynaptic membrane potential. This single
Wsyn value was applied globally, meaning its magnitude was independent of the particu-
lar identities of the neurons forming any given connection. It was calibrated using known
feeding circuit dynamics, specifically tuned so that 100 Hz activation of sugar-sensing
gustatory receptor neurons produced approximately 80% of maximal firing in motor neu-
ron 9 (MNQ9), a key neuron controlling extension of the fly’s proboscis (feeding append-
age). This calibration point was chosen based on extensive prior experimental characteri-
zation of the sugar sensing in the feeding initiation pathway.

The model employed a leaky integrate-and-fire (LIF) framework with a-synapse dy-
namics, incorporating synaptic conductance, membrane resistance, and time constants
derived from previous Drosophila modeling and electrophysiological studies. Overall, the
model made several simplifying assumptions: neurons had zero basal firing rates, gap
junctions were not available and thus excluded, and neuromodulatory effects beyond
basic excitation/inhibition were not incorporated.
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Despite those simplifications, validation efforts yielded encouraging results. Shiu et al.
primarily focused on simulating two well-characterized circuits: the feeding circuit and
the antennal grooming circuit, to validate their model (Shiu et al,, 2022, Hampel et al,,
2015). They computationally activated subsets of gustatory receptor neurons (sugar, wa-
ter, bitter, and Ir94e-expressing) for the feeding circuit and analyzed the resulting network
activity patterns. Similarly, they simulated the antennal grooming circuit by activating
mechanosensory neurons in the Johnston's organ, a sensory structure in the antenna
that detects antennal movements. The authors employed three primary approaches to
validate these predictions: direct comparison of computationally predicted neural activity
with experimental calcium imaging data, in silico silencing experiments to assess the ne-
cessity of specific neurons (validated against genetic silencing experiments in real flies),
and optogenetic activation studies testing whether specific neurons were sufficient to
elicit the behaviors predicted by the model (without embodiment). Through this multi-
faceted validation strategy, they demonstrated their model could accurately recapitulate
known feeding and grooming behaviors, achieving 91% accuracy across 164 experimen-
tal predictions and generating novel insights like the inhibitory role of Ir94e neurons in
feeding. A companion study further validated the model’s predictive power by using it to
successfully identify distinct neural circuit mechanisms underlying context-specific halt-
ing behaviors in the Drosophila locomotion system (Sapkal et al.,, 2024).

Cowley et al., 2024

Unlike the connectome-driven approaches described above, Cowley et al. developed
their model primarily through behavioral and functional constraints (Cowley et al., 2024).
Their approach centered on understanding how specific neuron types contribute to
behavior by systematically silencing neurons and incorporating these perturbations into
model training. They collected behavioral data from 459 male-female fly pairs during
courtship interactions for model fitting. They recorded six behavioral variables from the
male: three movement parameters (forward velocity, lateral velocity, and angular velocity)
and three measures of song production (sine song, fast pulse song, and slow pulse song).
In each experimental condition, they genetically silenced one of 23 different visual pro-
jection neurons (LC) types that form a bottleneck between the optic lobe and the central
brain. Their model consisted of three components: a convolutional network processing
the male's reconstructed visual experience, a bottleneck layer of 23 units (each repre-
senting one LC type), and a decision network producing behavioral outputs. The model
processed sequences of 10 frames (~300ms) of visual input to predict behavior, and its
training involved “knockout training”: when training on data from flies with a silenced

LC type, Cowley et al. set the corresponding model unit's activity to zero, forcing the
network to learn how each LC type contributes to behavior. To validate their model, they
performed two-photon calcium imaging in head-fixed males from five LC types, testing
responses to both artificial and naturalistic visual stimuli. Despite being trained only on
behavioral data, their model achieved a 35% correlation with neural responses. The mod-
el's prediction that LC types work in combination rather than as independent channels
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was further supported by analysis of the FlyWire connectome, which revealed shared
inputs and outputs among LC types.

NeuroMechFly and Vaxenburg et al., 2025

Parallel to these advances in brain simulation, there has also been significant progress

in developing detailed embodied simulations of Drosophila. While these models current-
ly employ relatively simple neural controllers compared to the simulations discussed
above, they represent an important complementary approach that could eventually
enable studying a broader range of fly behaviors when combined with more sophisticated
neural models. Two notable efforts in this direction are the NeuroMechFly project and

the recent work by Vaxenburg et al. The NeuroMechFly team developed a morphologi-
cally accurate model derived from X-ray microtomography data with 65 body segments
and 122 degrees of freedom, where each degree of freedom represents an independent
type of movement or rotation possible at a joint. The model initially focused on walking
and grooming behaviors (Lobato-Rios et al., 2022). Their first version learned to produce
stable walking patterns matching those seen in real flies - see the video - including the
typical three-legged walking pattern where legs move in alternating groups of three. Their
2024 update expanded the model's capabilities to include vision and smell, demonstrating
more complex behaviors like following scent trails while avoiding obstacles in their path
(Wang-Chen et al., 2024). Notably, this updated version integrated the connectome-con-
strained model developed by Lappalainen et al. to simulate visual processing during a
fly-following task. Vaxenburg et al. took a different approach, building their model from
high-resolution confocal microscopy data with 67 body segments and 102 degrees of
freedom, along with sophisticated physics modeling including fluid dynamics for flight
and special features that allowed the simulated fly to stick to surfaces like real flies do
(Vaxenburg et al.,, 2025). Through reinforcement and imitation learning, their ANN-driven
model successfully replicated both walking and flight behaviors from real fly trajectories,
including complex maneuvers like rapid turns and sudden changes in direction. Their
model also demonstrated behaviors such as maintaining altitude over uneven terrain and
navigating through winding trenches without collision.
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Gap Analysis

Like larval zebrafish, Drosophila represents a unique convergence of experimental tracta-
bility and biological sophistication, making it an attractive target for integrated brain sim-
ulation efforts. Scheffer and Meinertzhagen recognized the need for integrated approach-
es in a comprehensive 2021 analysis, where the authors outlined 15 key areas requiring
coordinated investigation beyond connectomics, spanning biochemistry, cell physiology,
and whole-animal concerns (Scheffer and Meinertzhagen, 2021).

A core technical challenge facing Drosophila-based approaches stems from challenges of
imaging all neurons simultaneously. The presence of air-filled tracheae and fat deposits

in Drosophila creates significant challenges for whole-brain imaging at cellular resolution.
However, the ability to efficiently image defined populations of neurons, as well as easily
perturb those defined neurons while measuring both neural activity and behavior, makes
Drosophila a powerful model for neuron modeling.

Similar to larval zebrafish, adult Drosophila has only minor clinical and industrial applica-
tions. However, fruit flies do represent stable adult-stage organisms rather than rapidly
developing larvae. As a result, they could potentially support neural recording in the same
individuals over longer time horizons, without the complications caused by rapid neural
development. This eliminates many of the constraints that characterize larval zebrafish
work, where the brief developmental window limits experiment duration and complicates
data integration across modalities. Furthermore, adult Drosophila exhibit a substantially
richer behavioral repertoire, including sophisticated social behaviors. This behavioral
sophistication could provide more stringent validation criteria for whole-brain Drosophila
simulations, including better tests of out-of-domain generalization.

(44

AAA brain emulation is a computational model
that aims to match a brain’s biological components
and internal causal dynamics at a chosen level of
biophysical detail.

29
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Model Organism Overview: Drosophila

Model Organism
Overview:

Drosophila

Anticipated Sci-
entific Insights

Experimental
Tractability

Pros

Rich Adult Behavioral Repertoire: Complex social behaviors, learning, individuality and motor sequences provide sophisti-

cated validation targets.

Structure-Function Bridge: Could illuminate approaches to inferring causal models in systems where exhaustive record-

Mature Research Ecosystem: Drosophila has a broad research community, with sophisticated genetic tools including
frontier technologies such as facile single cell-type specific genetic access, combinatorial barcoding libraries already being
close to achieving whole-brain coverage (Bitbow's 32,000+ barcodes) and expansion microscopy protocols achieving
electron microscopy-like spatial resolution (>40x expansion with Re-PKA-ExM), and was able to leverage this for larger
consortia.

Multiple Technical Paths Forward: Complementary advances in EM, ExM, and X-ray microscopy provide diverse routes to
molecular and structural mapping

Stable Adult Platform: Unlike larval models, it allows extended experiments and complex behavioral studies
Practical Advantages: Low-cost maintenance and manageable computational scale (~140k neurons)

Feasibility-Complexity Sweet Spot: ~140k neurons, still small enough for whole-brain connectomics and near-whole-
brain imaging.

Cons

Evolutionary Distance: Further from mammalian
brain architecture than other tractable models like
larval zebrafish.

Challenges performing whole-brain imaging.
Compared to the transparent larval zebrafish brain,
high speed, whole brain imaging at cellular resolu-
tion is more challenging.

Behavioral Recording Constraints: Current
imaging setups (head-fixation, etc.) somewhat limit
the observable behavioral repertoire, particularly
for organisms capable of complex behaviors like
courtship or flying.
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Gaps and Opportunities: Drosophila

Gaps and Gaps (non-exhaustive selection)

opportunities:

Drosophila

Neural dynam- Imaging Trade-offs: Current approaches navigate these challenges

ics through different compromises. Light field microscopy achieves fast
(~200Hz) whole-brain imaging but at sub-neuropil resolution. Two-photon
microscopy provides cellular resolution but usually requires head fixation
and has a limited field of view.

Advance the frontier of maximum recording time in Drosophila:
Currently, up to ~15h are possible. Given that the flies can get up to 75 days
old, potentially up to an order of magnitude more is theoretically possible.

Neuromodulation in Drosophila: bigger datasets on neuromodulation
are needed

Molecular Limitations: The FlyWire connectome, derived from electron
microscopy, provides primarily morphological and connectivity infor-
mation, in addition to limited data to distinguish excitatory vs. inhibitory
neurons, lacking crucial details about neurotransmitter identities, receptor
distributions, and other molecular properties that influence circuit func-
tion. The integration of barcoding and ExM approaches towards creating

a comprehensive ExM-derived molecularly annotated connectome is
nascent, with some pioneering work at Janelia.

Connectomics

Inter-individual Variability: While there are indications of stereotypy in
the fly brain’s neural circuits, systematic understanding remains limited as
the community has reconstructed little more than “one and a half” connec-
tomes to date. Moreover, it does not yet account for sex differences.

Missing Molecular Foundation: While the FlyWire connectome provides
complete structural connectivity, current models must bridge a signifi-
cant structure-to-function gap through multiple assumptions, including
neurotransmitter identities, synaptic strengths, and more (Eckstein et al,,
2024).

Computational
Neuroscience

Integrated Neuromechanical Framework: Current tools typically
separately simulate neural activity and biomechanics. To integrate these
components, unified simulation platforms are needed.

Limited Experimental Electrophysiological Data: Electrophysiological
data (e.g, membrane potentials or spiking frequency) is often the most
useful inputs and outputs for computational modeling, yet this data is
challenging to collect in Drosophila.

lllustrative Project Opportunities

Deep-Brain Three-Photon Performance: Systematically characterize resolution, signal-to-noise
ratio, and photodamage limits of three-photon microscopy in deepest regions of the Drosaphila brain.
Establish performance benchmarks for imaging through trachea-filled tissue at cellular resolution.

Whole-Brain Voltage Dynamics: Optimize next-generation voltage indicators and imaging preps for
simultaneous recording from >10,000 neurons across multiple Drosophila brain regions at millisecond
resolution.

Develop some way of imaging flies in complex behaviors, including extremely lightweight threads
for continuous brain recording.

Expand single brain recording horizon: Develop sophisticated repeated imaging abilities for fruit
flies that allow for 25 h+ of recording per individual

Aligned neuronal recordings and connectomics: Ideally, both males and females will reconstruct
whole CNS connectomes, combined with extensive calcium imaging prior to reconstruction.

Whole Body EM: Scan the whole organism and trace nerves with more detail across the organism.

Multiplexed Molecular Mapping Protocol: Develop a protocol for iterative antibody labeling and
imaging compatible with high-expansion (>40x) ExM and enable reliable detection of 15+ proteins
through serial rounds of staining.

Synaptic-Scale X-ray Microscopy: Given that Drosophila has some of the finest neurites known to
exist, demonstrating sufficient resolution imaging of Drosophila brain tissue using X-ray ptychography
and validating against electron microscopy ground truth could pave the way for future X-ray-based
whole-brain imaging applications.

Resting state Drosophila brain model: There still has not been a full Drosophila brain simulation in
which all neurons would be active at least at their spontaneous levels across the whole brain. One
needs a spontaneously active brain network within which some sensory or other signals can be
instantiated.

“Emulate the fly” roadmap: An end-to-end plan for collecting all components to create a compelling
emulation of the fly.

OpenFly framework: An effort that aggregates all the computational neuroscience data and provides
computational tools for everyone.
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Mouse

Anatomy & Behavior

The house mouse (Mus musculus) is one of the most widely used model organisms in
neuroscience. At birth, the typical mouse weighs approximately 1 gram, and males reach
around 36 grams while females reach around 27 grams (JAX). In laboratory conditions,
mice typically live 2-3 years, with some individuals reaching up to 5 years under optimal
conditions, though wild specimens rarely survive beyond 1-2 years due to predation and
environmental pressures.

The mouse brain reaches approximately 90% of its adult size by two weeks of age (Orr

et al,, 2016). Neuron counts increase from approximately 57 million at 4 weeks to a peak
of 69 million by 15 weeks before stabilizing at 63-70 million in adulthood (Fu et al., 2012;
Herculano-Houzel et al,, 2006). These neurons are packed into a volume of 420-460 mm?®
(Vincent et al., 2010) - ~5,000x larger than the brains of Drosophila and larval zebrafish
(~0.04-0.08 mm?), and roughly 3,000x smaller than the human brain (1,200 cm?®). The
neurons are distributed across major regions, including the cerebellum (~52 million
neurons), neocortex (~8.6 million neurons), and olfactory bulb (~7.2 million neurons). Out-
side the brain, the spinal cord contains an estimated 8 million neurons (Fu et al., 2012).
Typical firing rates in vivo are estimated to fall broadly within a range from below 0.001

Hz to 50 Hz or more, varying significantly with cell type and behavioral state. Energy
budget models for the rodent cortex use an estimated average firing rate of 4 Hz (Attwell
& Laughlin, 2001; Howarth et al,, 2012), a value derived from earlier in vivo studies in rats
where population averages ranged from 1.5-4 Hz (and individual neurons from 0.15-16 Hz).
The electrophysiological properties of neurons and synapses in the mouse brain, partic-
ularly within the cortex, are relatively well characterized. Combined with the extensive
knowledge of cell types derived from transcriptomics, the mouse emerges as an attractive
model system for whole-brain emulation efforts.
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\/bZe' Rodent behavior (rat, as no similar mouse videos were available)

Various complex motor and learning behaviors

Even before birth, the maternal environment and hormonal factors mold behavioral ten-
dencies. Individual differences in traits like anxiety and exploration emerge and gradually
stabilize throughout development. However, major life events such as social stress or
environmental challenges can still significantly influence the adult behavioral phenotype
(Brust et al., 2015).

Adult mice exhibit a sophisticated behavioral repertoire encompassing complex social,
cognitive, and reproductive domains. Their social organization features intricate domi-
nance hierarchies maintained through scent marking, aggressive displays, and vocal and
chemical communication. Cognitively, they demonstrate remarkable capabilities in spatial
navigation, associative learning, and behavioral flexibility, readily adapting to environ-
mental changes and remembering both positive and aversive experiences. Even among
genetically identical individuals, mice show stable personality differences in traits like
anxiety, exploration, and sociability - variations that persist despite standardized labo-
ratory conditions. Their reproductive behavior involves elaborate courtship rituals, and
females display comprehensive maternal care, including nest building, pup retrieval, and
nursing. These core behavioral patterns remain relatively stable throughout adulthood,
though aging gradually diminishes exploratory drive, learning speed, and overall activity
levels (Brust et al., 2015).
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Neural Dynamics

Neural activity recording

In recent years, we have seen remarkable progress in our ability to record neural activ-
ity in behaving mice. Key approaches include optical techniques, such as calcium and
voltage imaging, and electrophysiological recordings, notably with high-density probes
like Neuropixels. Nevertheless, fundamental tradeoffs remain between the number of
neurons that can be recorded simultaneously, temporal resolution, and the animal’s
freedom of movement. While electrophysiology offers unparalleled temporal resolution for
individual spikes of up to a few thousand neurons (as discussed later), current approach-
es to calcium imaging in mice have also seen tremendous advances and can be broadly
divided into head-fixed and freely moving preparations, each with distinct advantages
and limitations.

In awake, head-fixed preparations, mice are typically positioned on treadmills that allow
some degree of movement while maintaining the stability needed for high-quality imag-
ing. This approach has enabled increasingly comprehensive recordings of neural activity.
The MICrONS consortium, for example, recently demonstrated simultaneous recording
of approximately 75,000 excitatory neurons across layers 2-5 of visual cortex at 6-10 Hz,
spanning multiple visual areas during 14 80-minute sessions over 6 days, close to 20h in
total (MICrONS Consortium, 2024). Additionally, the Allen Institute for Brain Science has
produced extensive open-access calcium imaging datasets under standardized condi-
tions, often targeting specific cell types. Notable examples include their 'Visual Coding
2P’ dataset, featuring recordings from nearly 60,000 neurons during passive sensing (de
Vries et al,, 2019), and their ‘Visual Behavior 2P’ dataset, with data from over 50,000 neu-
rons collected during active behavioral tasks (Piet et al., 2024), provide deep insights into
cortical function.
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Z[VIR¥N Overview of the optical neural recording landscape in Mouse

Radar plots based on the optical recording literature cited in the report. We plot the following dimensions of brain
recordings: spatial resolution, brain volume, temporal resolution, and (estimated) individual and cumulative recording
duration. The plots split recordings from fixated (A) and freely moving experiments (B). The outer ring is normalized to

the maximum known values. Each ring represents one order of magnitude. The data for this figure is available in the
linked data repository.
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Even more expansive capabilities have been shown using another 2P-imaging approach
(light beads microscopy), which has enabled simultaneous imaging of up to 1 million
neurons across the dorsal cortex while maintaining cellular resolution at 2 Hz (Manley et
al,, 2024). In parallel, developments in surgical approaches have enhanced optical access
- curved glass windows (“crystal skull”) that replace the dorsal cranium - remain viable
for imaging at least 11 weeks post-surgery, providing access to an estimated 800,000-
1,100,000 neurons spanning over 30 neocortical areas, though the maximum sustainable
recording durations possible with this approach have not been systematically character-
ized (Kim et al., 2016). However, despite these technological advances, head-fixed prepa-
rations fundamentally limit the range of natural behaviors that can be studied. To mitigate
this limitation and expand the repertoire of investigable behaviors, sophisticated virtual
reality (VR) environments have been integrated with head-fixed preparations. These set-
ups allow mice to perform complex tasks, such as spatial navigation or decision-making,
while neural activity is monitored with cellular resolution using 2P microscopy (Dombeck
et al,, 2010; Harvey et al., 2012).

Advances in freely moving imaging have also been substantial, driven particularly by

the development of lightweight microscopes. The MINI2P microscope weighs under 3g
and uses a flexible 0.7mm fiber bundle cable, enabling two-photon imaging at 15-40 Hz
from 300-600 neurons per plane across up to four imaging planes (approximately 1000
neurons total) within a 420 x 420 um? field of view. When stitching across multiple fields
of view to cover a 2.2 x 2.2 mm? area, over 10,000 neurons can be recorded, though at re-
duced temporal resolution (Zong et al,, 2022). Even lighter microscopes have since been
developed, such as the 0.43g TINIscope (Xue et al.,, 2023). However, imaging systems
compatible with freely moving mice face particularly harsh tradeoffs between the number
of neurons recorded, temporal resolution, and signal quality. Even with optimal recording
conditions, calcium indicators remain too slow to capture individual action potentials for
many neurons in mice. Recent advances in voltage imaging offer promise for tracking
individual spikes, with new approaches enabling simultaneous recording from over 300
spiking neurons in the mouse cortex at 400 Hz for over 20 minutes (Bai et al., 2024).

An alternative to either calcium or voltage imaging is electrophysiology. A large-scale ex-
ample of such an effort is the International Brain Laboratory (The International Brain Lab-
oratory, 2017). This initiative was able to collect a “comprehensive set of recordings from
115 mice in 11 labs performing a decision-making task with sensory, motor, and cognitive
components, obtained with 547 Neuropixels probe insertions covering 267 brain areas in
the left forebrain and midbrain and the right hindbrain and cerebellum’ Mice were trained
to turn a wheel in response to the position of a visual grating. This generated roughly 60
GB of electrophysiology data and 1 TB of video data, of roughly 150 hours in total. The
Allen Institute has also generated extensive Neuropixels datasets. For example, their
‘Visual Coding Neuropixels' dataset, derived from mice passively viewing visual stimuli,
comprises recordings from over 40,000 quality-controlled units cumulatively across many
experiments, typically using up to six probes per mouse to target visual cortex, hippo-
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campus, and thalamus (de Vries et al., 2023). An even larger dataset, the ‘Visual Behavior
Neuropixels' project, was acquired while mice performed a change detection task, yield-
ing over 200,000 units recorded from 81 mice using a similar multi-probe strategy that in-
cluded visual cortical, thalamic, hippocampal, and midbrain structures (Allen Institute for
Brain Science, 2022). It is important to note that these large unit counts are aggregates
from numerous experiments; individual multi-probe recordings simultaneously capture
activity from hundreds to potentially a few thousand units, depending on the number of
probes and the density of recorded regions.

Neurotransmitters and Neuromodulators

Several genetically encoded indicators now enable monitoring of key neuromodulatory
systems in the mouse brain, including sensors for acetylcholine, dopamine, histamine,
norepinephrine, and serotonin (Muir et al., 2024). Additionally, sensors have been devel-
oped for select neuropeptides, including CRF, dynorphins, enkephalins, GRP, orexins,
oxytocin, and somatostatin. However, these tools cover only a small portion of known
neuromodulatory systems. Mass spectrometry studies have identified between 500-850
peptides in the mouse brain, with roughly half being classical neuropeptides derived from
about 40-45 neuropeptide precursor genes, and half being peptides derived from intra-
cellular proteins (Fricker et al,, 2010; Zhang et al., 2012). Developing tools to monitor this
broader range of signaling molecules remains an important challenge for understanding
neuromodulation in vivo.

Perturbation

Optogenetic techniques enable precise spatiotemporal control of neural activity. Ad-
vanced approaches like two-photon optogenetics aim for cellular-scale targeting, while
three-photon excitation can offer access to deeper brain regions, typically 1-1.3 mm into
brain tissue, allowing targeting of structures like layer 5 of the cortex (Xu et al., 2024; Lee
et al, 2020; Adesnik and Abdeladim, 2021). Nonetheless, the capabilities offered by op-
togenetics, including both one-photon and multi-photon methods, have enabled several
discoveries, including neural populations and activity patterns responsible for diverse
behaviors (Piatkevich and Boyden, 2023). These behaviors include parental care (Kohl et
al,, 2018), spatial object recognition (Kempadoo et al,, 2016), aggression against intrud-
ers (Lin et al., 2011), breathing rhythm (Sherman et al,, 2015), social memory (Oliva et al.,
2020) and social-spatial association formation (Murugan et al., 2017), visual perception
(Lee et al., 2012), wakefulness (Cho et al., 2017), locomotion (Hagglund et al., 2013), sleep
(Kitamura et al., 2017), face gender discrimination (Afraz et al., 2015), water (Zimmerman
et al,, 2016) and food consumption (Nectow et al., 2017), responses to odors (Root et al,,
2014), movement (Gritton et al., 2019) and aversion or preference of a place (Kim et al.,
2019), reward-seeking (Otis et al.,, 2017), parental behavior (Stagkourakis et al,, 2020) and
encoding of places (Zhang et al., 2013). Suthard et al. demonstrated that optogenetic
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stimulation of hippocampal engram cells can recapitulate the cellular activity patterns
seen during natural fear memory recall, revealing coordinated neuron-astrocyte dynam-
ics that underlie both naturally and artificially induced fear states (Suthard et al., 2024).
Importantly, one- and two-photon optogenetic perturbations in the mouse have helped
uncover circuit mechanisms underlying a variety of neural computations involved in
perception and action (e.g., Reinhold et al., 2015; Li et al., 2015; Lien and Scanziani, 2018;
Carrillo-Reid et al.,, 2019; Marshel et al.,, 2019; Chettih and Harvey, 2019; Keller et al., 2020;
Daie et al.,, 2021; Green et al., 2023; Vinograd et al,, 2024) and even enabled comparative
studies with human subjects, such as shedding light on the mechanisms of dissociative
first-person experience (Vesuna et al., 2020).

Connectomics

Establishing the IARPA MICrONS consortium in 2016 marked an important development
in mouse connectomics. The consortium’s work progressed in two major phases - first
imaging a focused volume in cortical layer 2/3 (250 x 140 x 90 um), then expanding to
image, segment and partially reconstruct an entire cubic millimeter spanning six cortical
layers and three higher visual areas. MICrONS combined in vivo calcium imaging with
electron microscopy, generating over a petabyte of imaging data (MICrONS Consortium
et al,, 2025). During this period, a parallel effort by Motta et al. mapped a 90 x 90 x 60 um
volume of somatosensory cortex within just 4,000 person-hours (Motta et al., 2019), large-
ly comprising targeted manual work to correct the automated reconstruction (focusing
on resolving algorithm-identified axon splits and mergers, and completing dendritic spine
attachments).

In 2023, the NIH launched the $150 million BRAIN Initiative Connectivity Across Scales
(BRAIN CONNECTS) program, funding 11 projects over 5 years to develop tools for brain-
wide connectivity mapping. One prominent project within this initiative, a $33 million
Harvard-led effort (in collaboration with Google Research, Allen Institute, MIT, Cambridge
University, Princeton University, Johns Hopkins University) aiming to reconstruct and
proofread 10 mm? of the mouse hippocampus using high-throughput electron micros-
copy (Januszewski, 2023), was seemingly impacted by changes in NIH funding priorities
in early 2025 (Markowitz, 2025), though the technical work appears to be continuing
independently of NIH support. However, the BRAIN CONNECTS program includes other
significant synaptic connectomics efforts. For instance, a project led by the Allen In-
stitute received approximately $6.1 million in its first year to image up to 10 mm? of the
mouse cortico-basal ganglia-thalamo-cortical loop at synaptic resolution (NIH, 2023).
This project uses serial section tilt TEM tomography and aims to develop a pipeline for
high-throughput integrated volumetric electron microscopy for whole mouse brain con-
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nectomics, including linking to cell types via gene expression data. While focusing on just
a fraction (roughly 2-3%) of the mouse brain, this volume represents a notable scaling
challenge, approximately 10 times larger than the previous MICrONS dataset. The five-
year project will use two 91-beam electron microscopes operating in parallel. Success
would demonstrate whether current electron microscopy and automated reconstruction
technologies can scale sufficiently to tackle the complete mouse connectome eventually.
Notably, maintaining a similar 5-year timeline for imaging an entire mouse brain would
require scaling to approximately 40-50 such microscopes working in parallel, highlight-
ing both the technical challenges and infrastructure requirements for mapping complete
mammalian brains at synaptic resolution.

Regarding expansion microscopy in the mouse brain, the availability of sophisticated
genetic tools combined with the prohibitive scale of EM-based reconstruction has accel-
erated the development of alternative approaches. E11 Bio, one of the first FROs launched
by Convergent Research, recently detailed its PRISM (Protein-barcode Reconstruction via
Iterative Staining with Molecular annotations) platform, which addresses key bottlenecks
in light-microscopy connectomics by providing neurons with unique molecular signatures
for self-correcting reconstruction (Park et al.,, 2025). The platform achieves this by combi-
natorially expressing 18 antigenically distinct, cell-filling proteins via AAVs, which are then
visualized in 5x expanded tissue through iterative immunostaining. This approach enables
automated proofreading across spatial gaps of hundreds of microns and was shown to
increase automatic tracing accuracy by 8-fold over conventional single-color methods. In
a demonstration on a ~10 million um?® volume of the mouse hippocampus, the technique
also enabled detailed molecular mapping of synapses, revealing that large, complex syn-
aptic structures known as ‘thorny excrescences’ tend to have similar sizes when they are
clustered closely together on the same dendrite.

Among other ExM developments, ExA-SPIM (Glaser et al., 2024) demonstrated unprece-
dented imaging throughput, achieving 946 megavoxels per second with an effective res-
olution of 250x250x750 nm?* after 4x expansion. This effective resolution is calculated by
dividing the microscope’s native optical resolution by the tissue’s linear expansion factor,
indicating the resolving power relative to the sample’s original, unexpanded dimensions.
However, this resolution is far from sufficient for dense connectomic reconstruction. The
team successfully imaged entire 3x expanded mouse brains in just 24 hours per channel,
tracking sparsely labeled subcortical projection neurons and their axonal projections
across the brain. This combination of high throughput, multi-color capability, and rel-
atively low system cost - approximately $175,000 to $250,000, depending on the laser
configuration (A. Glaser, 2024, personal communication) - makes it particularly promising
for whole-brain mapping efforts. This potential has motivated the development of new
optical systems, including a custom lens that, when combined with higher expansion fac-
tors of 3-12x, will enable effective lateral resolutions of 50-150nm, potentially bringing the
system not far from the resolution required for dense reconstruction. Meanwhile, Tavakoli
et al with their LICONN (light-microscopy based connectomics) approach demonstrated
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dense reconstruction in mouse cortex, imaging a ~1 million cubic micrometer volume
spanning cortical layers II/11I-1V at effective resolutions of ~20nm laterally and ~50 nm
axially through ~16-fold expansion, with the 0.47 teravoxel dataset acquired in just 6.5
hours at an effective voxel rate of 17 MHz (Tavakoli et al., 2025). In parallel, Kang et al. de-
veloped multiplexed expansion revealing (multiExR), achieving visualization of more than
20 distinct proteins within the same mouse brain specimen through sequential rounds of
antibody staining and imaging while achieving median registration precision of 25-39 nm
(Kang et al,, 2024).

X-ray microscopy efforts also show promise. Early demonstrations using X-ray holo-
graphic nano-tomography (XNH) achieved sub-100 nm resolution across 300x200x1000
Km tissue volumes (Kuan et al.,, 2020). More recently, Bosch et al. developed a correla-
tive workflow combining in vivo calcium imaging, synchrotron X-ray tomography, and
volume electron microscopy to investigate both function and structure within the same
tissue (Bosch et al., 2022). In follow-up work, Bosch et al. also demonstrated another key
advance: using X-ray ptychographic tomography under cryogenic conditions with spe-
cialized radiation-resistant resins to achieve sub-40nm resolution capable of resolving in-
dividual synapses (Bosch et al., 2023), an important achievement for x-ray connectomics.
While whole-brain X-ray imaging has been demonstrated at cellular resolution (Humbel
et al., 2024), achieving synaptic resolution across large volumes remains an active area of
development.

The mouse hippocampus connectome is expected to generate an estimated 25 petabytes
of data (Google Research, 2023). Imaging a whole mouse brain (approximately 500 mm?)
at 10 nm isotropic resolution would theoretically generate approximately 5 x 107 voxels (or
3.2 x 10" voxels at 25 nm isotropic resolution). At 1 byte per voxel for a single channel, this
would thus require approximately 0.5 exabytes (or 32 petabytes at 25nm isotropic res-
olution). The significant storage requirements of connectomes at the scale of the whole
mouse brain (and beyond) have motivated the development of compression techniques
capable of alleviating data management constraints: EM-compressor, for example, can
decrease the storage needed to store raw EM data by as much as 128x without compro-
mising subsequent neuron reconstruction (Li et al., 2024). Meanwhile, neuron recon-
struction efforts are ongoing for the MICrONS cubic millimeter, containing an estimated
120,000 neurons. Automatic synapse detection has identified over 523 million synapses
within the volume, and, as of January 2025 (v1300), over 1,700 axons have been manually
proofread and cleaned, establishing over 500,000 verified connections to somas within
the dataset (MICrONS Consortium, 2024).
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Computational Modeling
The Blue Brain Project

The Blue Brain Project (BBP) was a pioneering effort to construct large-scale, biophysi-
cally detailed in silico models of rat cortical microcircuitry. Although BBP focused on rat
rather than mouse cortex, we include it for historical context, as its biophysically detailed
reconstruction methods and data-integration pipelines have substantially informed
subsequent mouse modeling. Having been started before large-scale connectomic
datasets were available, the BBP developed various tools to integrate disparate datasets
describing cell types and connectivity in the rodent cortex. Cortical anatomy of their most
significant recent model release (Reimann et al., 2024) was based on a three-dimensional
cell atlas, in which cell bodies of 60 morphologically distinct cell types were placed based
on experimentally reported densities. From there, detailed multi-compartment models of
cells were expanded based on known shape constraints and populated with ion chan-
nels based on parameter-tuning to recreate in vitro recordings. Connectivity is inferred
based on the principle of axonal-dendritic overlap: computationally generated neuronal
morphologies, cloned from available reconstructions, are placed in the model volume,
and connections are formed where their processes are sufficiently close, with subse-
quent extensive pruning to match experimentally observed synaptic densities. While the
resulting synaptic density statistics are compared against experimental data for valida-
tion, this approach assumes that geometric proximity is the primary determinant of local
connectivity and does not directly incorporate more recently available, detailed maps of
specific circuit wiring, potentially missing more complex organizational rules. Synapses
are modelled on a detailed level, including a pool of available neurotransmitter vesi-

cles and short-term plasticity. In total, they developed a detailed model of 36 mm? of rat
somatosensory cortex (a process they term ‘reconstruction; which, it is important to note,
involves extensive model building with numerous assumptions, distinct from data-driven
connectomic reconstructions), comprising 4.2 million neurons with 14.2 billion synapses
between them. They had access to the Blue Brain 5 supercomputer providing 0.8 TFlops
of computational power.

Electrical properties of single neurons were validated by optimising ion channel densities
in different neuronal compartments to give rise to firing properties, action potential wave-
forms, and passive properties observed in vivo (Reva et al., 2023). Synaptic parameters
were fitted similarly (Ecker et al., 2020). The size of the model allowed modelling not only
of local connections within a cortical column, but also mid-range connections between
close brain regions (Isbister et al.,, 2024), and spontaneous activity was comparable to
that observed in vivo. Long-range connections, such as sensory input, still had to be
approximated. As an example of external sensory input, the movement of whiskers was
modelled by directly injecting current into the soma of neurons projecting from the thala-
mus to the cortex, mimicking the flow of information in real brains. Notably, while the BBP
model is explicitly positioned to represent a non-barrel somatosensory cortex, this vali-
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dation approach relied on whisker stimulation, which primarily engages the barrel cortex.
Similarly, other validation efforts utilized visual-like stimuli characteristic of the visual cor-
tex, indicating that some key physiological validation data were drawn from cortical areas
or sensory modalities different from the model's specified domain. This produced activity
congruent with that observed in vivo on the millisecond scale in model parameterisations
representing awake and anesthetized animals. Additionally, by artificially hyperpolarizing
selected neurons in their simulation, they could reproduce results produced by optoge-
netically inactivating neurons in animals.

However, the project’s reliance on algorithmic inference for connectivity, a necessity giv-
en the lack of comprehensive, experimentally-derived connectomes at the time (Reimann
et al,, 2015), remains a significant limitation. Critics such as Frégnac have critically ob-
served that this method relies on a ‘bootstrap’ logic to generate 'realistic instantiations of
possible connectomes, aiming for a brain ‘realistically connected in the statistical sense’
rather than one based on direct, comprehensive empirical mapping (Frégnac, 2021).
Furthermore, even when model outputs, such as activity patterns, resemble experimental
data, the challenge of parameter degeneracy (Marder, 2015) makes it difficult to ascertain
whether the model truly captures the correct underlying biological mechanisms. Different
configurations of neuronal and synaptic parameters could potentially produce similar
macroscopic outputs, meaning that a match to some experimental data does not, by
itself, confirm the model's biological accuracy or its generalization abilities as to predict
novel neural phenomena.
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IEIMI3E Replication from Figure 1in Isbister et al., 2024

Overview of the physiology and simulation workflow. 1. Anatomical model: Summary of the anatomical nbS1 mod-
el described in the companion paper. 2. Neuron physiology: Neurons were modeled as multi-compartment models
with ion channel densities optimised using previously established methods and data from somatic and dendritic
recordings of membrane potentials in vitro. 3. Synaptic physiology: Models of synapses were built using previously
established methods and data from paired recordings in vitro. 4. Compensation for missing synapses: Excitatory
synapses originating from outside nbS1 were compensated with noisy somatic conductance injection, parameterized
by a novel algorithm. 5. In vivo-like activity: They calibrated an in silico activity regime compatible with in vivo spon-
taneous and stimulus-evoked activity. 6. In silico experimentation: Five laboratory experiments were recreated. Two
were used for calibration, and three of them were extended beyond their original scope. 7. Open Source: Simulation
software and a seven column subvolume of the model are available on Zenodo (see data availability statement).

Data generalisations: Three data generalisation strategies were employed to obtain the required data. Left: Mouse

to rat, middle: Adult to juvenile (P14) rat, right: Hindlimb (STHL) and barrel field (S1BF) subregions to the whole nbS1.
Throughout the figure, the corresponding purple icons show where these strategies were used.

2. NEURON PHYSIOLOGY Ve 3. SYNAPTIC PHYSIOLOGY B

@ DATA Revaetal., 2022 MODELING DATA MODELING
+Paired in vitro somatic recordings
MORPHOLOGY ELECTRICAL | MORPHO-ELECTRICAL (30 pathways) | . AMPA NMDA. GABA
+ 1,017 unique - Standardized in vitro | - 208 me-types Kinetics Dynamics | ) )

morphologies recordings +5 types of dynamics

i « lon channel X _}L Facilitating |
+ 60 m-types B B8 fg’r‘nda“‘g'ha?e‘f:rgﬁg:'zed Pre v, \ 5 g m | -Multi-vesicular release
i o A |
ION CHANNELS Somatic Dendritic ! ) | -Parameters fit to
+ Kinetics & distributions [N Post VL[[\ k | Depressing in vitro recordings
Amplitude _ku A :

K
Wos o

1. ANATOMICAL MODEL (&) —
Reimann et al., 2022

® G- 4. COMPENSATION FOR —
® 'é> (_ MISSING SYNAPSES

- 66% of synapses missing from
the rest of the brain

NEURONS SYNAPSES

« Algorithm finds layer-specific
compensation

@- 5. IN VIVO-LIKE ACTIVITY N

CONNECTIMITY:

— LOCAL

— tHaLamic B ®

— INTER-REGIONAL

LAYER-WISE VALIDATION +
IARACTERIZATION:

5 spontaneous
« Firing rates
+ Emergent dynamics

5 stimulus-evoked

+PSTHs

- Latencies

+ Response magnitude

DATA GENERALIZATIONS

Mouse Adult Region —_—
Rat | Juvénile | Other'region
ia B b
® e
== p——
« RECREATING/EXTRAPOLATING IN VIVO:
B

B0 Varanietal, 2022 @ Yuetal, 2019
BE®® shapioetal, 2022 @@  Reyes-Puerta
B® Prince etal, 2021 etal, 2015

+ 210K neuron subvolume

« Simulation software openly available

7. OPEN SOURCE 6. IN SILICO EXPERIMENTATION

Billeh et al,, 2020

State of Brain Emulation Report 2025

—89

(e



State of Brain Emulation Report 2025 Part 2: State of Brain Emulation across Organisms

While sharing the goal of large-scale, biophysically detailed cortical modeling with
projects like the Blue Brain Project, the approach taken by the Allen Institute for Brain
Science (Billeh et al.,, 2020) placed a distinct emphasis on the deep integration of concur-
rently acquired experimental data specific to the mouse visual cortex circuit they were
modeling. By estimating cell densities and types from anatomical data, they modeled a
400um-radius column of visual cortex containing ~52,000 neurons with high biological
fidelity, surrounded by 179,000 point-neurons to avoid boundary artifacts. Connection
parameters were inferred from various physiological datasets, and connections were
optimised layer-wise to produce firing dynamics that matched in vivo Neuropixels record-
ings (Siegle et al,, 2021). Input was modelled via a module that mimics thalamic input to
the visual cortex. This module comprised spatial-temporal filters following experimen-
tally reported distributions, which were then connected to cortical neurons to give rise

to established tunings. Connection strengths were set to match experimentally reported
current strengths. This allows encoding arbitrary visual spatiotemporal stimuli (movies)
via simulated thalamocortical spike trains.

The neural dynamics exhibited by the model were verified by comparing the activity of
simulated neurons in response to drifting gratings with in vivo Neuropixels recordings,
focusing on such response features as average firing rates, direction selectivity, and
orientation selectivity for different neuron classes and cortical layers. Comparing these
responses between the data and the model, including model versions with altered circuit
architecture, resulted in several predictions regarding the organization of the visual cor-
tical connectivity (Billeh et al.,, 2020), with some of the predictions confirmed by indepen-
dent experimental studies (Rossi et al., 2020). A later study (Rimehaug et al., 2023) found
that model responses on the level of current source density were inconsistent with results
from Neuropixels recordings, and improved it by adjusting connection weights and in-
cluding feedback connections.

Wang et al., 2025

Wang et al. based their work on cortical activity rather than on explicit connectivity
information: Using a dataset containing 900 minutes of two-photon recordings of cal-
cium traces in 67000 visual cortex neurons in response to natural movies, as well as
recordings of behavioural variables such as pupil position and movement speed, they
trained a recurrently connected deep neural network to predict the activity of individual
neurons (Wang et al., 2025). The whole network consists of a perspective network, which
uses ray-tracing to infer the retinal activation of the mouse based on pupil position and
stimulus, the modulation network, an LSTM network that encodes behavioural variables,
a recurrent foundation core that captures abstract aspects of brain processing, and a
readout network, which maps activity of the core network to individual neurons. By fixing
the weights of the foundation core and only retraining encoding and decoding networks,
the researchers were able to combine data from 8 mice and achieve higher accuracy than
with networks trained end-to-end for each mouse.
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The network quality was validated by predicting the activity of neurons in relation to
novel visual stimuli and calculating the normalised cross-correlation with held-out in vivo
recordings. Additionally, the properties of in silico neurons were compared to those of in
vivo neurons, showing that they had developed the same parametric tuning properties
concerning orientation and spatial position.

Replication from Figure 3a from Wang et al. (2023) Predictive accuracy of foundation
models

Schematic of the training and testing paradigm. Natural movie data were used to train: 1) a combined model of the
foundation cohort of mice with a single foundation core, and 2) foundation models vs. individual models of new mice.

MNatural Movies

timuli (6 Dor

Training Stimuli
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Gap Analysis

The mouse is the most commonly used model organism in medicine. Accordingly, there is
vast experience with it as a model organism, and it is highly relevant to vast parts of the
life sciences.

But unlike smaller organisms discussed so far, the scale of data acquisition is herculean
at minimum. The mouse brain represents a fundamental transition point, in particular for
brain-wide functional recording. With ~70 million neurons spread across its sizable brain,
no current or easily foreseeable technology - barring, speculatively, neural dust - will en-
able simultaneous recording from all neurons at physiologically relevant timescales. Light
scattering restricts cellular-resolution imaging to superficial layers (~1-1.5 mm depth),
making subcortical and deep cortical circuits inaccessible (Marblestone et al., 2013).
While novel approaches like tissue transparency agents (Ou et al., 2024) show promise,
whole-brain imaging at cellular resolution remains physically infeasible due to unresolved
scattering and absorption in deeper brain regions. This reality forces a pivot in approach:
rather than pursuing exhaustive functional characterization, successful mouse brain
emulation will require learning to predict neural dynamics from structural and molecular
properties. The mouse thus serves as the critical test case for whether we can bridge the
structure-to-function gap. This challenge will only become more pressing as we move
toward larger mammalian brains.

(44

AAA brain emulation is a computational model
that aims to match a brain’s biological components
and internal causal dynamics at a chosen level of
biophysical detail.

29
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Model Organism
Overview: Mouse

Pros

Cons

Anticipated Scientific Insights

Experimental Tractability

Mammalian brain: Mammalian brains exhibit structural and functional simi-
larities to the human brain, with thoroughly characterized homologues.

Structure to function: For smaller volumes, like MICrONS, complete
reconstruction of structure and function for every neuron is possible, which
offers wide-ranging opportunities for understanding the structure-function
relationships.

Rich social and cognitive behavior: Verify whether simulations can
achieve complex social and cognitive behavior patterns.

Critical milestone: achieving brain emulation in mice is likely the milestone
that will trigger massive investments in human-scale emulation efforts.

Various applications in biomedical research: Given the mouse’s role
in biomedical research, in-silico simulations might replace some in vivo

Strong validation with major research initiatives: BRAINS CONNECTS is
evaluating the feasibility of reconstructing a whole mouse brain. MICrONS
demonstrated the collection of aligned structure and function datasets. .

Extensive electrophysiological and morphological data exist for many
cell types in the cortex and their synaptic connections.

Not miniature humans. Although mice and humans are both
mammals, their brains are still reasonably different. For example,
humans rely on vision much more than mice; mice would be
classified as legally blind.

Very Large investments: Comprehensive mouse programs will
require investments in the 100M to billion-dollar range

Centralization: The scale of the mouse connectome likely necessi-
tates moving away from a decentralized academic model towards
a central, large-scale facility, which might reduce the number of
actors who can contribute.
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Gaps and Opportunities: Mouse

Gaps and Gaps (non-exhaustive selection) lllustrative Project Opportunities

opportunities:

Mouse

Neural dynamics Harsh Tradeoffs Between Coverage, Resolution, and Noise. Current methods force extreme compromises. Integrated Barcoding-Function Atlas. Combine E11 Bio's PRISM

Connectomics

Head-fixed systems achieve high coverage (~IM neurons at 6-10 Hz) but restrict natural behavior. Systems compat-
ible with freely moving behavior enable studying naturalistic behavior, but they can only record about a thousand
neurons. Voltage imaging resolves spikes at 400 Hz but is limited in coverage and recording duration (Bai et al.,
2024). In general, increasing coverage degrades signal-to-noise ratio (SNR) due to shot noise (Rupprecht, 2021),
with setups compatible with free behavior suffering the steepest penalties.

Limited Functional Data for Refinement and Validation. Achieving the scale of functional data needed for
comprehensive model refinement and validation remains a significant challenge, as current recording approaches
capture only a fraction of the brain’s neurons and attempts to increase scale face inherent trade-offs with signal
quality and noise levels (Rupprecht, 2021).

post-implantation.

with in vivo calcium/voltage imaging to generate a multi-modal
dataset linking neural activity patterns to post-mortem structural
connectivity.

Inverse Scattering Depth Benchmark. Test the limits of deep-
brain imaging by integrating Kang et al's inverse scattering
algorithms (Kang et al,, 2024) with three-photon microscopy.
Quantify maximum imaging depth in the mouse brain.

Chronic Crystal Skull Endurance Study. Systematically quan-
tify the maximum viable recording duration using “crystal skull”
glass windows in mice. Track signal quality over 6-12 months

EM-pipelines remain bottlenecked by proofreading requirements. Electron microscopy (EM), the most mature
imaging approach, faces prohibitive costs due to manual proofreading, which accounts for >95% of total project
costs (Jefferis et al, 2023). Even with Al-assisted segmentation, proofreading a whole mouse connectome would
require prohibitive amounts of human labor. Alternative approaches like E11 Bio's PRISM (genetic barcoding + ExM)
aim to bypass this bottleneck but remain unproven at scale.

Molecularly Annotated Connectomes. EM provides only structural (“‘naked") connectomes, lacking synaptic-level
molecular information. While ExM protocols now resolve ~20 proteins in expanded tissue (Tian et al,, 2024), scaling
this to whole-brain volumes requires orders-of-magnitude improvements in staining throughput, antibody compat-
ibility, and automated analysis.

Inter-Individual Variability Unquantified. Synaptic wiring varies across mice due to experience-dependent
plasticity. Current efforts focus on single specimens, but modeling learning/memory requires mapping multiple
connectomes - a cost-prohibitive task even for small volumes (Abbott et al,, 2020).

Exascale Data Demands. A whole-brain EM dataset (~1 exabyte) strains storage and analysis pipelines. While
tools like EM-compressor reduce raw data needs by 128x (Li et al, 2024), they do not address the computational
challenges of querying or analyzing petascale connectomes.

Alternatives to EM remain underdeveloped. X-ray ptychography has demonstrated synaptic resolution (Bosch
et al, 2023) but currently lacks throughput for whole-brain imaging. ExM has demonstrated molecular profiling but
struggles with isotropic expansion and tissue distortion at scale. Correlative workflows (e.g,, XRM-to-EM) remain
experimental and labor-intensive (Jefferis et al, 2023).

Synaptic Receptor Necessity Study: Perform paired in vivo
electrophysiology and post-mortem expansion microscopy
(ExM) to map synaptic receptor distributions (AMPA, NMDA,
GABA, etc.) in the same neurons. Determine the minimal set

of molecular markers required to predict synaptic properties.
Publish open datasets linking receptor density, synapse size, and
functional measurements.

Al Proofreading Scaling Laws: Quantify how automated proof-
reading accuracy (c.f, RoboEM) scales with training data volume
and model size. Identify computationally optimal frontiers.

Ultra-Expansion Protocol Development: Adapt re-PKA proto-
cols to achieve 40-50x isotropic expansion in adult mouse brain
tissue. Solve distortion challenges.
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Gaps and Gaps (non-exhaustive selection) lllustrative Project Opportunities
opportunities:

Mouse

Computational Models remain circuit- or region-specific. Scaling simulations to the whole mouse brain poses substantial Virtual Reality Benchmarking Suite: Develop standardized

Neuroscience

computational challenges. Further, the field is bottlenecked by the absence of a whole-brain connectome able to
constrain model architecture and parameters (Igarashi, 2024).

Structure-to-Function Translation Challenge. The mouse represents the first organism where inferring function
from structure becomes essential for brain simulation. Even with a complete connectome, translating structural
connectivity into functional circuit dynamics poses fundamental challenges that will require the development of
novel approaches (Abbott et al,, 2020).

Lack of Standardized Benchmarks. While theoretical evaluation frameworks like the embodied Turing test have
been proposed (Zador et al, 2023), and initial practical benchmarks for specific sensory systems are emerging
(Turishscheva et al, 2023), comprehensive practical implementation remains challenging. Even if whole-brain
mouse simulations were achieved, comparing results across different modeling approaches would remain difficult
without clear quantitative benchmarks, creating a barrier for systematic progress.

VR environments to test mouse neuromechanical models (e.g.,
DeepMind's biomechanical simulators) in naturalistic tasks like
foraging, social interaction, and predator evasion.

Whole-Brain Simulation Performance Comparison:
Systematically analyze the computational costs of simulating
mouse-scale networks (70M neurons) across frameworks (NEST,
NEURON, ARBOR, Jaxley, BrainPy, NeuronGPU) at varying biophys-
ical resolutions (LIF vs. HH models, different models of synaptic
transmission, etc.).

Neuromechanical Integration Standards: Develop open APIs
and data formats to unify neural simulators with biomechanical
engines (MuJoCo, PyBullet). Enable bidirectional sensory-motor
integration for embodied tasks like locomotion.
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Neural Dynamics 96

Connectomics 98

\/ Computational Modeling 100
. Gap Analysis 101

Humans

Anatomy & Behavior

The human brain reaches its peak volume in the third to fourth decade of life, typically
measuring around 1000-1400 cm?® and weighing approximately 1.3-1.4 kg, or roughly 2%
of total body weight (Steen et al.,, 2007, Raichle et al., 2002). The adult brain measures
approximately 140 mm in width, 167 mm in length, and 93 mm in height, though consid-
erable individual variation exists. The brain contains an estimated 86 billion neurons, with
distinct regional distributions: approximately 16 billion neurons in the cerebral cortex, 69
billion in the cerebellum (which comprises only 10% of brain volume), and less than 1 bil-
lion distributed throughout other brain regions (Azevedo et al.,, 2009). While estimates for
total brain synapses range between 100-1000 trillion, the most precise ones exist for the
neocortex, containing an estimated 164 trillion synapses £17% (Tang et al.,, 2001). Typical
baseline firing rates observed in human cortical and hippocampal recordings (often de-
rived from clinical patients) frequently average 0.5-4 Hz (Aghajan et al.,, 2023), with firing
rates increasing in response to salient stimuli or during tasks, potentially reaching averag-
es of 10-20 Hz or higher in some cortical neurons.

The breadth of human behavior patterns is not treated here, as we take reader familiarity
as given.

Neural Dynamics

Ethical considerations and the extensive genetic toolkit requirements make optical meth-
ods for single-neuron resolution recording currently non-viable in humans. Consequently,
invasive electrophysiological techniques represent the only modality capable of achieving
such resolution in the human brain. Typically employed within clinical research (e.g., as
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part of brain-computer interface trials) or during neurosurgical procedures, these meth-
ods provide valuable albeit highly localized data on individual neuron activity.

Pioneering efforts in chronic human intracortical recording have heavily relied on Utah
Electrode Arrays (UEAs). These devices, often comprising a 96-channel grid of stiff silicon
electrodes, are FDA-cleared for investigational BCI studies (Sponheim et al.,, 2021). UEAs
have demonstrated impressive longevity in human participants, with successful record-
ings maintained for multiple years. While UEAs have enabled significant BCI achieve-
ment, they sample neurons primarily within a 2D cortical plane and typically yield a mod-
est number of separable single units (often well below 150) (Chung et al., 2022; Sponheim
et al,, 2021).

High-density silicon probes, such as Neuropixels, have recently allowed for a significant
increase in the scale and resolution of acute single-neuron recordings in humans during
intraoperative settings (Chung et al., 2022). For example, a recent study used Neuropixels
probes (10 mm shank; 384 selectable channels out of 960 contacts/recording sites) in 8
neurosurgical participants, isolating 596 neurons in total and up to ~100 neurons simul-
taneously from a single insertion, with recordings typically lasting 10-20 minutes (Chung
et al,, 2022). Another study employing the thicker Neuropixels 1.0-ST similarly obtained
hundreds of spike-sorting clusters in three participants, with well-isolated neurons identi-
fied from those clusters after curation (Paulk et al., 2022). An important challenge in these
open craniotomy settings is the substantial brain motion due to cardiac and respiratory
pulsations, which is negatively correlated with unit yield and necessitates sophisticated
motion correction algorithms.

Further applications of Neuropixels have provided detailed accounts of single-neuron
activity during human language processing. Recordings from 685 neurons across cortical
layers in the superior temporal gyrus (STG) of 8 participants listening to speech (Leonard
et al., 2024) indicated that individual neurons encoded various speech sounds (e.g., con-
sonants, vowels, pitch), with neurons at different cortical depths tuned to different speech
features. In a study using Neuropixels in the language-dominant prefrontal cortex of 5
participants (Khanna et al., 2024), activity from 272 neurons, even before speech, outlined
the structure of upcoming words. This information about the word's structure was encod-
ed in a specific, timed order. Similarly, Neuropixels recordings from 3 participants (Jamali
et al., 2024) identified single neurons in the prefrontal cortex that selectively represented
word meanings, with activity also reflecting sentence context and semantic relationships.
Such studies demonstrate the use of high-density probes to examine how individual hu-
man neurons process complex language elements, revealing specific encoding patterns
and their organization.

Efforts towards next-generation, fully implantable, high-channel-count BCls include Neu-
ralink’s N1 implant. This system uses 1,024 electrodes distributed across 64 flexible, robot-
ically inserted "threads,’ designed for wireless data transmission and inductive charging

(Neuralink, 2024). As part of their PRIME clinical trial, three participants with quadriplegia
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have received the N1implant. These participants have had their implants for over 670
days and used the BCI system for over 4,900 hours, with recent independent daily use
averaging 6.5 hours (Neuralink, 2025). Initial BCI performance for cursor control has been
reported at up to 8.0 bits-per-second (BPS). Wireless implants like Neuralink's N1 allow
neural recording during more naturalistic daily activities than traditional wired systems.
Challenges reported include the retraction of some electrode threads post-surgery in one
participant, which required algorithmic adjustments to maintain performance. While still
in early clinical stages, these systems aim to substantially increase the scale and practi-
cality of human chronic neural recording.

While the aforementioned electrophysiological methods provide increasingly detailed
recordings of neural activity, the ability to perturb specific human neurons at single-cell
resolution in vivo to map function is severely limited. Optogenetic perturbation, a pow-
erful tool in model organisms, is not currently viable for targeted modulation within the
living human brain due to ethical barriers, challenges in precise gene delivery for opsin
expression, and difficulty delivering light safely to deep brain structures.

Patch-clamp electrophysiology, however, serves as a robust method for perturbative
studies on ex vivo human brain slices. Tissue resected during neurosurgery can be kept
viable, allowing researchers to perform whole-cell patch-clamping. This enables precise
current or voltage injections to characterize neuronal firing properties, pharmacological
manipulations to block specific ion channels or activate receptors, and paired recordings
with synaptic stimulation to investigate microcircuit connectivity (Menéndez de la Prida
et al,, 2002; Peng et al., 2019). Nevertheless, performing true whole-cell patch-clamp
inside the intact, living human brain remains technically and ethically unfeasible. Other
in-vivo human perturbation techniques, such as Transcranial Magnetic Stimulation (TMS)
or Deep Brain Stimulation (DBS), affect larger neuronal populations and lack single-cell
specificity.

Connectomics

Despite the considerable technical challenges of imaging such large volumes of nervous
tissue at synaptic resolution, electron microscopy efforts in primate and human brains
have achieved several notable milestones. Wildenberg et al. imaged a 0.8 mm X 2.4 mm X
40 nm block of rhesus macaque cortex, revealing that primate neurons receive 2-5 times
fewer synaptic inputs than their mouse counterparts (Wildenberg et al., 2020). Loomba

et al. conducted comparative connectomic analysis across species by imaging multiple
cortical samples, including ~175 x 220 x 100 um?® volumes of layer 2/3 from macaque
and human, and a larger 1.7 x 2.1 X 0.03 mm?® volume spanning all cortical layers in hu-
man temporal cortex (Loomba et al,, 2022). A landmark achievement came in 2024 when
Shapson-Coe et al. demonstrated high-throughput serial section electron microscopy
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of a 170-um-thick slab of human temporal cortex at nanoscale resolution. This volume,
obtained during epilepsy surgery, spans approximately 1.05 mm? of tissue (accounting

for sectioning-induced compression) and was imaged at a resolution sufficient to resolve
individual synapses and subcellular structures. Thus, it represents the most significant
volume of human brain tissue imaged at a resolution sufficient for dense connectomics to
date (Shapson-Coe et al., 2024).

The most significant X-ray imaging effort for human connectomics is the SYNAPSE
(Synchrotron for Neuroscience - an Asia-Pacific Strategic Enterprise) collaboration,
which aims to map an entire human brain at 0.3 um resolution (Stampfl et al,, 2023) in
2-3 mm-thick sections (Chen et al., 2021). The collaboration has made remarkable tech-
nical progress, achieving imaging speeds of 1 mm? per minute and coordinating roughly
10 synchrotron facilities, including the first beamline entirely dedicated to connectomics
at the Taiwan Photon Source (Chen et al,, 2021). Their next phase, SYNAPSE 2.0, aims to
achieve another 10-100x speed increase to 0.2 mm?®/second (Stampfl et al., 2025). Despite
this, it is important to note that the project'’s target resolution is designed for mapping
cellular distributions and long-range projections, not for resolving individual synapses,
and the SYNAPSE roadmap does not currently include plans to reach synaptic-level
detail. However, separate theoretical proposals suggest that a similar high-throughput
synchrotron pipeline could potentially reach synaptic resolution by integrating expansion
microscopy (ExxRM), thus bridging the current resolution gap (Collins, 2023).

The reconstruction of primate connectomes at synaptic resolution remains a massive
undertaking. Storage requirements alone would be significant: assuming one byte per
voxel, a typical marmoset brain would require 5.8 exabytes at 10 nm isotropic resolution
(0.37 exabytes at 25 nm); a typical macaque brain 104 exabytes (6.65 exabytes at 25nm);
and a human brain roughly 1-1.4 zettabytes (64-90 exabytes at 25nm). The volume imaged
by Shapson-Coe et al., representing an extremely minute part of a whole human brain,

or approximately 0.00007% of a whole human brain, produced over 1.4 petabytes of data
(Shapson-Coe et al., 2024), motivating the development of dedicated infrastructure (Mai-
tin-Shepard and Leavitt, 2022). Given the scale of this challenge, some whole-brain map-
ping efforts opt for lower-resolution imaging approaches. Even so, storage requirements
remain substantial - the SYNAPSE collaboration, which aims to map the human brain at
0.3 um isotropic resolution using X-ray imaging, estimates they will need exabyte-level
storage for a single brain dataset and approximately 100 exabytes for their complete con-
nectome mapping goals. Reconstruction would also represent a daunting challenge. The
HO1 dataset released by Shapson-Coe et al., even with thousands of Google-developed
Tensor Processing Units (TPUs) for automated neuron segmentation and synapse detec-
tion methods (Blakely and Januszewski, 2021), still required extensive manual proofread-
ing. While the computational pipeline successfully identified about 16,000 cells and 150
million synapses, ensuring accuracy still demanded intensive human effort, with expert
reviewers spending over 3.5 hours per neuron to correct remaining errors. Proofreading
efforts continue to this day, with the original release including only 104 proofread cells.
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Computational Modeling

Unlike organisms like Drosophila or larval zebrafish, computational neuroscience of the
human brain operates under severe data constraints. There is no synapse-level con-
nectome, and functional recordings either cover only hundreds of cells or provide only
indirect measures of neural activity at low spatial and temporal resolution (in the case

of non-invasive methods like fMRI). This fundamental limitation has shaped a landscape
dominated by feasibility studies - efforts focused primarily on demonstrating the possibil-
ity of simulating human brain-scale networks on current supercomputing infrastructure,
rather than attempting to replicate specific circuits or behaviors with high biological
fidelity.

Yamazaki et al., 2021

Yamazaki and colleagues developed one of the first human-scale simulations of the cere-
bellum using their MONET simulator on Japan's K supercomputer, capable of 11.3 PFLOPS
(Yamaura et al.,, 2021). Their model leveraged anatomical studies providing cerebellar
layer thicknesses and cell density measurements across different regions. This structural
data informed the spatial organization and the number of neurons of each type in their
model.

They constructed a network of 68 billion neurons and 5.4 trillion synapses from this
anatomical data. Neurons were modeled as conductance-based leaky integrate-and-fire
units with a-function synapses implementing four receptor types (AMPA, NMDA, GAB-
AA, GABAB). Connection patterns between neurons were defined using two-dimensional
Gaussian distributions, with parameters like connection probabilities and spatial extents
derived from anatomical studies.

Model validation occurred in two stages. First, they examined resting state activity, com-
paring baseline firing rates across different cell types with experimental data. Second,
they tested the model’s ability to reproduce the optokinetic response (OKR), a reflexive
eye movement controlled by the cerebellum. For OKR, they found Purkinje cells modulat-
ed their firing rates between 50-80 Hz, within the range observed across various animal
studies (20-100 Hz). Running on 82,944 nodes of the K computer, the simulation achieved
speeds 578 times slower than real-time.

Lu et al., 2023

Lu and colleagues developed the “Digital Twin Brain" (DTB) platform, implementing

a whole-brain simulation of 86 billion neurons and 47.8 trillion synapses on a GPU-
based supercomputing cluster (Lu et al.,, 2024). Their model'’s structure was informed by
three types of macroscopic brain imaging data: structural MRI provided regional neu-
ron densities at 3x3x3mm? voxel resolution, diffusion tensor imaging (DTI) determined
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voxel-to-voxel connection probabilities, and PET data established what proportion of
connections remained local vs projecting to other regions (varying from ~29% external
connections in cortex to ~13% in cerebellum). Of all possible connections between vox-
els, only 0.72% were realized, reflecting the brain’'s sparse connectivity.

They developed a “hierarchical mesoscopic data assimilation” (HMDA) approach to
tuning model parameters. This involved first training a smaller network (0.2 billion neu-
rons) to estimate hyperparameters for synaptic conductances and then using these to
initialize the full model. Parameters were iteratively refined by comparing simulated BOLD
signals to real fMRI data during a visual evaluation task. Each neuron was modeled as a
conductance-based LIF unit with four receptor types (AMPA, NMDA, GABAa, GABAD).
Average input synapses per neuron were set to 1000 for cortical/subcortical regions

and 100 for brainstem/cerebellum. Long-range connections were restricted to excitatory
neurons only. To manage computational demands on their 14,012 GPU cluster (each node
contained four GPUs with 16GB of memory each), they developed a partitioning algorithm
that balanced computational load and minimized inter-GPU communication. The fitted
model achieved correlations above 0.98 with experimental BOLD signals in input regions
(with a 2-timepoint lag) and 0.75 across the cortex. When trained to predict participants’
emotional image ratings, the model significantly correlated with actual ratings (r=0.655,
p=0.006). Running at different firing rates (7Hz, 15Hz, and 30Hz), the simulation achieved
speeds between 65-118.8 times slower than real-time.

Gap Analysis

The human brain sits in a league of its own, being more than three orders of magnitude
larger than the mouse brain. This extraordinary scale creates a fundamental divide in
feasibility: while whole-brain recording at cellular resolution is achievable in zebrafish
and likely feasible in Drosophila, and whole-cortex recording remains at least imagin-
able for the mouse, comprehensive neural recording in humans faces insurmountable
physical barriers with current or near-future technologies, even setting aside regulatory
and ethical challenges. Most models are based either on low-resolution functional data
(fMRI) or anatomical observations, requiring significant extrapolation from these sparse
constraints. Unlike more approachable organisms where neural recordings can constrain
brain simulations, human-scale models will likely need to find different approaches, po-
tentially relying on infering parameters primarily from structural datasets. Given current
technology, human brain connectome efforts would require industrial-scale operations
that dwarf any existing neuroscience facility. Facilities the size of modern semiconductor
manufacturing plants: thousands of electron or optical microscopes running in parallel,
or entire synchrotron facilities with multiple beamlines dedicated to brain mapping. Such
facilities would demand large-scale storage and computing infrastructure to process the
multi-exabyte datasets generated daily.
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Model Organism Pros Cons

Overview:

Human

Anticipated Scientif- Fundamental insights into Neuroscience: It seems plausible that Miscellaneous ethical consideratioins: Potential risks to individuals or even
ic Insights advanced brain models will transform our understanding of how the brain whole society have to be carefully evaluated.

works and how consciousness and personality traits arise.
Applications for human health

Feasibility of personality-preserving brain emulations

Experimental Trac- Computational models approaching human scale: Recent modelling

tability on high-performance computing datacenters is getting close to man-
aging the loads necessary to model whole human brains. Additionally,
progress towards more efficient neuromorphic hardware is ongoing.

First connectome reconstructions of human tissue: First reconstruc-
tions of human brain tissue can rely on the same methods as smaller
organisms.

Methodological limitations in humans: Many technologies require genetic
engineering or highly invasive brain surgery.

Resolution vs Coverage Trade-off. Non-invasive methods provide whole-brain
coverage but at the cost of spatial and temporal resolution. fMRI measures slow
hemodynamic responses averaged across hundreds of thousands of neurons, while
EEG and MEG provide faster temporal sampling but even coarser spatial resolution.
Conversely, invasive recordings can resolve individual neurons but are restricted

to tiny fractions of brain tissue, capturing thousands of neurons at best compared
to the brain's ~86 billion. This trade-off between resolution and coverage appears
fundamental rather than technological, making comprehensive recordings with full
human brain coverage at single-neuron resolution permanently out of reach.

Scale of human brain: At 1000x the scale relative to the mouse brain, the operation-
al challenges mentioned in the section about mouse are magnified substantially.
For instance, achieving synaptic resolution in a volume of ~1,200 cm® (vs. ~0.5

cm? for the mouse) demands capacity and throughput far beyond the capabilities

of current laboratories. Meeting this challenge will require near-industrial levels

of coordination, equipment scale-up, and data infrastructure, elevating human
connectomics from a traditional scientific project to a massive engineering and
logistics undertaking.

Likely strong interindividual and intercultural differences: Given human diversi-
ty differences in brain connectivity are expected.
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opportunities:

Human

Neural dynamics Structure-to-Function Dependency. A human connectome’s Extensive “Human in a dish recording”: Instead of gathering data

Connectomics

ultimate value for brain emulation depends critically on bridging the
structure-to-function gap. Even with molecular annotations, a fully
reconstructed wiring diagram is only the first step.

in vivo, human neuronal cell lines could be used to collect large-
scale data sets and facilitate modelling.

Electron Microscopy. At current effective scan speeds, achieving a
complete human EM dataset within a decade would require approx-
imately 30,000 parallel electron microscopes (Jefferis et al,, 2023).
Beyond microscope availability, sample preparation, automated
image segmentation, and proofreading each introduce substantial
computational and manual labor demands, though recent advances
in machine learning have improved automation capabilities (Ja-
nuszewski et al., 2020; Schmidt et al,, 2021).

More scalable methodologies: Expansion Microscopy (ExM)
and X-ray Microscopy (XRM): ExM has never been attempted at
anything close to the scale of a human brain. Tissue anisotropies,
distortion, and batch-to-batch consistency remain unresolved, par-
ticularly at the extremely high expansion factors needed to achieve
synapse-level resolution in large volumes. XRM promises high-speed
volumetric imaging of thick specimens, thanks to high-brightness
synchrotron beams, and is not constrained by the diffraction limit.
However, XRM's practical viability for a complete human connec-
tome remains untested, with significant challenges in achieving
dense reconstructions at synapse-level resolution.

Lack of baselines: In humans we have a surprisingly poor under-
standing of variables such as number of synapses per neuron in dif-
ferent areas of the brain or the ratio of local and distant connections
for neurons.

High-throughput EMs: Substantial optimization of beamlines,
automated sample handling, etc., could increase effective data
acquisition speeds by an order of magnitude, potentially more.

Prototypes of advanced imaging modalities: Establishing proto-
cols and scalability tests for methodologies like ExM and XRM.

Small connectomics studies across many areas of the brain:
Sample tiny areas from many areas of the brain from multiple indi-
viduals to determine variables for estimating the total computational
demands.
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Computational Neuro-
science

Data Scarcity: The most fundamental limitation is the lack of
adequate functional and structural data to constrain human brain
models. While future technologies may eventually provide detailed
structural data through connectomics, functional data at cellular
resolution will likely remain permanently out of reach due to phys-
ical and ethical constraints. This forces models to rely on massive
extrapolations from animal studies or indirect measurements,
severely limiting their biological validity.

Extreme Resource Demands: Even with optimal implementa-

tion, biophysically detailed models at accurate human scale (86B
neurons with realistic synaptic connectivity) would require exascale
computing systems for real-time simulation. The “memory wall” and
interconnect bandwidth limitations pose particular challenges for
efficiently simulating such massive, densely connected networks.

Model Validation Challenges: A key issue is the limited direct data
on human brain activity. In animal models (e.g., mice), scientists
can gather extensive and controlled neural recordings. However,
data from human brains is significantly less comprehensive, and
researchers have less control over recording locations. Further, rely-
ing solely on behavioral validation is insufficient to confirm that the

emulation truly replicates the brain's underlying neural mechanisms.

Human-scale neuromorphic computing experiments: Stress
testing the currently existing human-scale neuromorphic comput-
ing systems and identifying and iterating on their strengths and
weaknesses.
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Neural Dynamics:
Brain Function & Activity

In the 1920s, English physiologist Edgar Adrian wondered if it might be possible to record
the electrical activity of a single neuron as it fired, an idea that seemed almost impossible
given the technology of the time. Most scientists believed neural signals were too fast and
too small to measure. Using a primitive amplifier and an electrode thinner than a human
hair, Adrian managed to record the electrical pulses from a single sensory nerve fiber. His
1928 paper The Basis of Sensation (Adrian, 1928) revealed for the first time that neurons
communicate through discrete electrical impulses, or action potentials, and that the
frequency of these impulses encodes the intensity of the stimulus. This discovery earned
Adrian the Nobel Prize (Adrian, 1932).

Close to a century and many Nobel Prizes later, we now appreciate that neuronal activ-
ity is primarily shaped by fast synaptic inputs through chemical synapses and electrical
coupling via gap junctions. These signals are modulated by slower-acting neuromodu-
lators, hormones, and, to some extent, by surrounding glial cells. The structural features
of neurons, particularly their dendritic/synaptic architecture, membrane properties, and
ion channels, influence how these signals are integrated. Activity-dependent plasticity
mechanisms allow neurons to adjust their properties based on experience. Note that the
brain operates over time scales covering at least twelve orders of magnitude; electrical
activity happens at the millisecond timescale, whereas the brain changes physically over
decades.
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Many modalities have been developed over the past century to measure neuronal activity.
They differ substantially, by multiple orders of magnitude, in their temporal (sampling rate
and recording duration) and spatial (neuron resolution and brain coverage) properties.
The following figure illustrates this by comparing five different modalities across those
axes. The figure highlights the benefits and drawbacks of each recording modalities, as
well as the amount of information captured by the respective method. The ideal neurosci-
entific recording achieves single-neuron, single spike resolution across the whole brain
and permits chronic recording.

HIcUIAvA Simplified comparison of major neural recording modalities across key di-
mensions

Comparison across four dimensions. Resolution as number of individual cells recorded. Speed as temporal resolution
in frames per second. Maximum recording duration per session and total volume recorded. An ideal recording meth-
od for whole-brain human recording would rank at the top of each bar.. Calculations are in the data repository.

Simplified comparison of brain tissue recording modalities across key dimensions

Top values: optimal

Single Cell # 1 dm? (liter) recording capabilities

Thousands of Cells & Hours lcm?

10s of thousands of Cells & / g

<o b ¢ 1 mm?
Method
—t— fUS
=4 Calcium Imaging

=% \/oltage Imaging
MEA
EEG (dotted)
Millions of Cells 4 ‘#-1Hz - Seconds -1 um? #= fMRI (dotted)

Resolution Speed Duration Volume

State of Brain Emulation Report 2025

Generally speaking, non-invasive recording methods such as fMRI, EEG, fNIRS, or MEG
are incapable of single-neuron resolution. While non-invasive methods tend to have

a comparably high penetration depth, i.e., recording across deeper areas of the brain
(which matters in particular for large brains) and can record over hours, they lack spa-
tial resolution and only provide aggregate (indirect) information of the neuronal activity.
Invasive methods, however, can provide spatial resolution of individual neurons and
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extremely high sampling rates, i.e., recordings at the millisecond level. Since the first
single-cell recordings in the 1950s, these methods have evolved into sophisticated patch
clamping, high-density microelectrode arrays (MEAs), and calcium or voltage imaging
systems that measure electrical activity of individual neurons. The number of neurons
being simultaneously recorded - with electrophysiological methods like MEA and patch
clamping or imaging modalities such as calcium imaging - has roughly doubled every 5
years (Stevenson & Kording, 2011; Urai et al,, 2022; Mineault et al., 2024), but has rapidly
accelerated with the rise of optical techniques. Parallel recording of individual neurons
over time is now possible for up to one million cells simultaneously, though at low tem-
poral resolutions (sampling rate of about 1 Hz). Invasive methods not only require surgery
with direct access to the brain, but also often genetic engineering to express reporters of
neural activity. Electrophysiological arrays are often limited to the more superficial parts
of the brain.

Another dimension in which recording modalities differ is their ability to capture the full
scope of an organism's behavioral repertoire. Most modalities work exclusively or best

in non-moving or fixated organisms, substantially limiting the range of behaviors. Many
non-invasive methods are prone to movement artifacts and are almost unusable beyond
resting or head-fixed organisms. Some methods, for example, calcium imaging, can work
in both head-fixed and freely behaving animals; however, head-fixing animals typically re-
duces motion artifacts and permits higher spatial and temporal resolution. Miniaturization
of microscopes permits calcium imaging in behaving mice, however, the full behavior
repertoire is still substantially limited, given the equipment attached to the organism.

While acknowledging the importance and briefly characterizing non-invasive recording
modalities as well as electrophysiology studies in the following box, the method section
as well as organism-specific reviews focus on modalities that - at least in theory - allow
for whole brain recordings with single neuron resolution: Calcium imaging, voltage imag-
ing and the nascent field of ultrasound currently in development.

While electric coupling via neurotransmitters is the primary way of communication for
neurons, neuropeptides modulate neuronal activity and regulate long-term physiological
processes, such as structural changes. The scale of signaling peptides is far from millions
or billions of neurons; hundreds of neuropeptides could interact with their environment in
different permutations. This adds an entirely new dimension to what needs to be captured
to understand information processing in the brain. The totality of neuropeptides inter-
acting with each other is sometimes called “chemical / peptidergic connectome” on top
of the electric connectome, which is highly conserved across evolution. (Jekley & Yuste
2024). Unlike classical neurotransmitters, neuropeptides lack specific clearance mech-
anisms, allowing for sustained signaling that matches behaviorally-relevant timescales
(Guillaumin and Burdakov, 2021).
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At this point, it is not well understood what the relative contributions of neuropeptides to
electrical activity and the overall information processing of the brain are. In C. elegans,
for instance, where neuropeptide effects have been studied extensively (Bhat et al., 2021),
a long list of behavioral defects can be demonstrated in mutants without the respective
neuropeptide. A large variety of behaviors are regulated by neuropeptides in Drosophila,,
including feeding, aggression, and sleep (Nassel and Zandawala, 2022). One prominent
example for humans is oxytocin, which has been convincingly demonstrated to influence
complex bonding behaviors, e.g., in interactions of mothers and their newborn children
(Scatliffe et al., 2019).

Lastly, combining recording modalities with methods that allow a deliberate and con-
trolled manipulation or alteration of a specific part of a neural circuit (perturbation) is of
exceptional value to understanding brain dynamics. By selectively activating or inhibiting
specific neurons, researchers can directly test hypotheses and collect less correlated
datasets for later computational modelling. Early studies focused on manipulating broad
neural populations; modern approaches aim for increasingly precise control, from target-
ing anatomically defined regions to manipulating individual neurons.

In the following chapter, we survey major neural recording modalities for electrical activity
and neuromodaulators, including both invasive and non-invasive approaches, then cover
perturbation methods, provide representative cost ranges, and discuss data manage-
ment, standardization, and analysis.

Electroencephalography (EEG)

When performed on humans, EEG records the brain's electrical activity by placing
electrodes on the scalp to detect voltage fluctuations produced by large populations of
neurons, predominantly cortical pyramidal cells. The scalp-recorded signals in EEG are
blurred by the skull and scalp, which limits spatial precision to roughly one centimeter

or more. This resolution aggregates the activity of millions of neurons. EEG also pre-
dominantly captures signals from superficial cortical layers, as signals from deeper or
subcortical structures attenuate significantly before reaching the scalp. Researchers can
enhance spatial precision somewhat using high-density electrode arrays (64, 128, or more
electrodes) and computational source localization methods. However, the reliance on
scalp measurements makes it challenging to pinpoint activity at the resolution of individ-
ual cortical layers. Despite the poor spatial resolution, these signals allow researchers to
sample data at rates of 250 Hz to over 1 kHz, i.e., well above the neuronal firing rates. In
clinical or research settings, EEG can be collected continuously for hours or even days,
enabling extended monitoring of conditions such as epilepsy.
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Because EEG relies on electrodes attached to the scalp, participants can be seated
upright or lying down, and some mobile systems allow moderate movement and study of
real-world tasks. Despite this relative flexibility, excessive motion degrades data quality,
and researchers must constrain movement. The most common disruptions come from
eye movements and blinks (which can be 10-100 times larger than brain signals), mus-
cle activity from jaw clenching or forehead movements, and electrical interference from
nearby devices or power lines (showing up as a 50/60 Hz hum in the data). EEG systems
are highly accessible, likely with tens of thousands of devices worldwide across research
labs, hospitals, and increasingly, consumer applications. A research-grade system typ-
ically costs between $20,000 and $200,000 (Ledwidge et al,, 2018). Operating costs are
relatively modest, mainly involving electrode gel, cap maintenance, and technician time,
typically ranging from $50-200 per hour and relatively modest data sizes compared to
imaging modalities, though high-density systems recording continuously can generate
substantial datasets.

Functional Magnetic Resonance
Imaging (fMRI)

fMRIs use powerful magnets and radio waves to measure changes in blood oxygen levels
(the BOLD signal) throughout the brain. This technique identifies regions with height-
ened neuronal activity by detecting differences in oxygen-rich and oxygen-poor blood: as
neurons become more active, they consume more oxygen, and the subsequent increased
blood flow to replenish this oxygen is what fMRI visualizes to map brain function. A key
strength is non-invasive, whole-brain imaging. While typical fMRI studies often use voxel
sizes on the order of a few millimeters, high-resolution protocols can achieve 1 mm?
whole-brain coverage (de Martino et al., 2011; Heidemann et al.,, 2012), though this re-
mains relatively uncommon. At 1 mm?, fMRI aggregates signals from tens of thousands of
neurons, with the BOLD signal’s spatial point-spread being a limiting factor at this scale
(Marblestone et al,, 2013). State-of-the-art scanners push spatial resolution further, with
custom 7T systems achieving 0.56 mm isotropic whole-brain BOLD imaging (Feinberg
et al, 2023), and the 11.7T “Iseult” scanner reaching sub-0.5 mm “mesoscale resolution’
for functional imaging (Boulant et al., 2024). This approaches the spatial (though not
temporal) resolution of functional Ultrasound Imaging (fUSI) at ~0.1 mm?®, Even at these
advanced fMRI resolutions, BOLD signals represent hundreds to thousands of aggre-
gated neurons; single-neuron MRI remains far away without new contrast mechanisms
(Marblestone et al., 2013). Temporally, the BOLD signal’s intrinsic ~10-second rise and

fall limits the effective sampling rate to ~0.1 Hz, despite scanners technically acquiring
images every 1-3 seconds. As a consequence, to put this temporal resolution in context, a

U
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single brain image can be influenced by over 20 spoken words (Tang et al., 2023).

Human fMRI across data repositories like OpenNeuro, DANDI, and Brain Image Library is
typically on the order of 10-20h max with sessions of 1h each at ~1 mm? resolution, with
the most “intensive” datasets reaching 200 hours per subject (Kupers et al., 2024, Boyle
et al,, 2020). Different groups generated multimodal datasets, such as fMRI and EEG
(Mayhew et al., 2013; Pisauro et al,, 2017), or fMRI-fNIRS-EEG (Scarapicchia et al., 2017).
The key to good fMRI pictures is compliant participants. Motion correction and headcas-
es compensate for subtle head movements during scanning, as even millimeter-scale
shifts can contaminate the signal. Accordingly, fMRI is also limited in that it is restricted
to analysis of supine, generally non-moving participants, meaning that movement and the
complete behavior repertoire of organisms are challenging to study. Currently, thousands
of these devices are used globally for research purposes. A state-of-the-art 7T machine
can cost over $10M (Balchandani and Naidich, 2015). Operational costs are often quoted
at approximately $1000/hour (Marek et al., 2022).

Electrophysiology

Although invasive electrophysiological systems demonstrate remarkable and rapidly
advancing capabilities for BCls and fundamental neuroscience, their utility for whole-
brain emulation is inherently limited. They provide exceptionally high-quality, high-tem-
poral-resolution passive recordings of neuronal spiking activity. However, electrophysio-
logical recordings are, and will likely remain, highly localized to the small brain volumes
immediately surrounding the implanted electrodes. Indeed, scaling current electrophysio-
logical approaches to achieve significant coverage of the human brain faces fundamental
physical, biological and ethical hurdles. The sheer number of discrete implants required
would be infeasible, and the associated tissue response to such widespread penetration
would be prohibitive. Thus, these methods primarily offer sparse, high-fidelity data points
rather than a pathway to comprehensive functional mapping of the entire human brain.

Patch Clamp

Patch clamp recordings involve attaching a glass micropipette to a neuron’'s membrane
to measure electrical currents directly through individual ion channels. This technique
achieves the highest possible spatial resolution by recording from single neurons or even
isolated membrane patches containing individual ion channels. The temporal resolution
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is exceptional, capturing signals at microsecond timescales (>10 kHz sampling rates),
allowing researchers to observe individual ion channels’ opening and closing kinetics.
However, patch clamp recordings, depending on the exact technique, are typically limited
to minutes or hours for a single cell due to membrane destabilization and cell deteriora-
tion. In slice preparations or cell cultures, experienced researchers might maintain stable
recordings from multiple sequential cells over an 8-12 hour experiment (Mayer Jr and
Brown, 1998).

Patch clamp is highly invasive and requires precise micromanipulation under microscopic
visualization, limiting its use mostly to in vitro preparations (brain slices, cell cultures).
Patch clamp experiments have been done in vivo, but involve highly laborious and rela-
tively low-throughput procedures. We estimate that a basic setup costs between $50,000
and $150,000 (e.g., ScienceDirect Topics, Patch-Clamp Technique reports ‘almost $100 000
at current list prices' ), with operational costs of approximately $200-500 per day (see e.g.
the Ohio State University whole cell patch clamping service at $375/day) in consumables
(micropipettes, solutions) and requiring highly skilled operators.

Microelectrode Arrays (MEAs)

Microelectrode Arrays (MEAS) consist of recording electrodes embedded in a substrate
to simultaneously record from multiple individual neurons. MEAs bridge the gap between
single-cell and population-level recordings, typically capturing activity from dozens to
thousands of neurons, depending on electrode density. Modern high-density MEAs can
contain thousands of electrodes within a 1Tmm? area, approaching single-neuron resolu-
tion within local networks. MEAs sample neural activity at 10-50 kHz, capturing action
potentials and local field potentials with millisecond precision. Unlike patch clamp, MEAs
can maintain stable recordings for days to weeks in vitro, and implanted chronic arrays
can sometimes function for months to years in vivo, enabling long-term studies of neural
network dynamics and plasticity. Common challenges include signal quality decreases
with motion, electrode impedance changes over time, and tissue inflammatory respons-
es around electrodes. MEA systems are increasingly available in research settings, with
perhaps thousands of systems globally. We estimate that equipment costs range from
$50,000 for basic in vitro systems to over $250,000 for high-density or wireless in vivo
systems. Operational costs include replacement arrays ($500-2,000 each), surgical pro-
cedures for implantation ($1,000-3,000 per animal), and data storage for the substantial
volumes generated.
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Ultrasound

Ultrasound-based neuroimaging is distinct from electromagnetic approaches in that

it uses mechanical waves, brief “pings” of sound, to probe tissues. These waves travel
through soft tissue at around 1,540 m/s and get partially scattered back, carrying infor-
mation about local density and compressibility. Frequencies typically range from about 3
MHz (wavelength ~500 um) to 25 MHz (wavelength ~60 um), with attenuation in wa-
ter-rich tissue scaling linearly (Marblestone et al., 2013). Bone attenuates ultrasound more
severely, though this can be addressed through minimally invasive preparations such as
acoustically transparent cranial windows.

Currently, most neuroscientific research involving ultrasound revolves around hemo-
dynamic functional ultrasound imaging (fUSI), which measures changes in blood flow
rather than neural activity (Rabut et al., 2020). Hemodynamic fUSI involves transmitting
plane waves at multiple angles and detecting Doppler shifts from moving red blood
cells, producing images that quantify local cerebral blood volume with spatial resolution
around 100um and temporal resolution of 400 ms, all while enjoying significant coverage.
State-of-the-art probes are reportedly capable of imaging over 30% of the human brain
by volume (Forest Neurotech, 2025). However, as discussed above with fMRI, the hemo-
dynamic signal is ultimately a slow, indirect correlate of neural activity: the blood-flow
response emerges with a latency of around one second and is integrated over multiple
neural events (Aydin et al,, 2020). Norman et al. achieved a 0.4 mm? resolution with fUS
for an 8 cm®volume in monkeys (Norman et al.,, 2021).

A key development toward more direct ultrasonic measures of neural activity involves
gas vesicles (GVs): air-filled protein nanostructures that scatter ultrasound waves. These
2-nm-thick protein shells enclosing gas compartments can be genetically introduced into
mammalian cells and engineered to respond to biological signals, making them promis-
ing “reporter genes” for functional ultrasound (Shapiro et al., 2014). Recent developments
include the engineering of GVs to respond dynamically to calcium transients, resulting in
ultrasonic reporters of calcium (URoCs) - the first genetically encodable calcium indica-
tors for ultrasound imaging (Jin et al., 2023). Significant challenges remain, including slow
sensor kinetics (requiring 3.5 seconds to reach half-maximum signal upon calcium bind-
ing) and achieving robust expression in neurons. Further, research has only demonstrated
resolutions of about 100 um, insufficient to capture single neuron activity.

While the approaches described above leverage ultrasound as an imaging modality,
another proposed ultrasound-based technique, “neural dust’, uses ultrasound for pow-
er delivery and communication with implanted electrodes for direct neural recording
(Seo, 2018). These miniature devices (“motes”) leverage piezoelectric materials so that
when ultrasound waves from an external transducer reach these implants, some of the
ultrasound'’s energy powers the device while changes in electrical impedance caused by
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neural activity modulate how ultrasound is reflected back, creating a backscatter commu-
nication channel. This approach has been successfully demonstrated in peripheral nerves
and muscles in rodents, achieving wireless recordings comparable to conventional wired
systems (Seo et al,, 2016). In general, although still in its early stages, neural dust offers
significant potential: its ultrasonic powering can enable extremely small (50-100 um)
implants, promising high-density, minimally invasive neural recording. However, many
significant challenges remain, including delivering these microscopic motes to target
tissues, achieving sufficient backscatter sensitivity for reliable signal detection, develop-
ing robust biocompatible encapsulation, and employing the sophisticated beamforming
required to isolate signals from large numbers of motes.

In conclusion, ultrasound represents a modality with significant potential. For imaging
approaches like fUSI and gas vesicles, at least theoretically, higher frequencies (60-100
MHz) could achieve single-neuron resolution (~15-25 um) with significantly higher at-
tenuation. Meanwhile, neural dust offers a complementary approach through distributed,
miniature implantable sensors that can directly record neural activity with potentially less
tissue displacement than traditional electrodes. Together, these ultrasound-based tech-
nologies could advance the frontier of neural recording by potentially enabling whole-
brain recordings at cellular resolution in organisms as large as mice, while offering broad-
er coverage in larger brains than is currently achievable with other techniques. However,
substantial engineering challenges remain across all ultrasound approaches, and realiz-
ing the full potential of ultrasonic neural interfaces will require significant further research
and development.

Optical methods

Before we dive into two of the most prominent recording modalities (calcium and voltage
imaging) we want to provide a quick primer on photon microscopy. Readers familiar with
the systems can skip this section.

Traditional single-photon fluorescence microscopy relies on a fundamental quantum
mechanical process. When a fluorescent molecule absorbs a photon of the appropriate
energy (typically in the visible light range), an electron in this molecule is excited from
its ground state to a higher energy level. After a brief period (nanoseconds), the electron
returns to its ground state, releasing a photon with slightly less energy (and thus longer
wavelength) than the excitation photon. This difference between excitation and emission
wavelengths, known as the Stokes shift, allows us to separate the emitted fluorescence
signal from the excitation light using optical filters. In the context of brain imaging, this
process faces significant limitations. When visible light enters brain tissue, it encoun-
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ters numerous cell membranes, protein structures, and other cellular components that
can either absorb the light or change its direction (scattering). Both effects reduce the
number of photons that reach the focal point and make it harder to collect the emitted
fluorescence. Moreover, because single-photon excitation occurs wherever an excitation
photon encounters a fluorescent molecule, out-of-focus fluorescence creates a back-
ground signal that reduces contrast and spatial resolution. While techniques like confocal
microscopy can reduce this out-of-focus fluorescence using a pinhole, they cannot over-
come the fundamental depth limitation imposed by tissue scattering, typically restricting
1P imaging to depths of 200-300 micrometers of tissue (Xu et al., 2024).

Two-photon microscopy, first demonstrated by Denk and colleagues in 1990 (Denk et al.,
1990), revolutionized deep tissue imaging through an elegant quantum mechanical prin-
ciple: instead of using one high-energy photon to excite a fluorescent molecule, it uses
two lower-energy photons that arrive nearly simultaneously (within about 10'® seconds).
These lower-energy photons, typically in the infrared range (700-1040 nm), can penetrate
tissue much more deeply than visible light because they experience less scattering. Criti-
cally, the probability of two photons arriving simultaneously is only high at the focal point
of the microscope, creating natural optical sectioning and reducing photobleaching and
photodamage in surrounding tissue. This allows imaging up to about 600-800 microme-
ters deep (Xu et al,, 2024) in the cortex.

Three-photon microscopy extends these principles further by using three even lower-en-
ergy photons (typically >1300 nm) to achieve excitation. This technique offers several
advantages for deep imaging: the longer wavelengths experience even less scattering,
and the requirement for three coincident photons provides better background rejection.
Three-photon microscopy can reach depths of 1-1.3 millimeters (Xu et al., 2024), access-
ing structures like the hippocampus in mice that are largely inaccessible to two-photon
imaging. However, three-photon systems require more expensive laser sources and typi-
cally operate at slower speeds due to the need for higher pulse energies; further, another
consideration with three-photon systems is that three-photon imaging heats brain tissue
more readily than two-photon systems.

Because two-photon and three-photon microscopy rely on point-scanning, increasing the
number of recorded neurons requires distributing the available laser power across more
points and reducing the dwell time per neuron to maintain temporal resolution. Analysis
of publicly released datasets demonstrates this relationship clearly - as the number of
simultaneously recorded neurons increases from hundreds to thousands, there is a sys-
tematic increase in noise levels unless temporal resolution is sacrificed (Rupprecht, 2021).
This relationship holds across different imaging configurations and preparations, reflect-
ing the inherent physical limits of current optical recording approaches.
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Calcium imaging

Calcium imaging uses genetically encoded proteins that light up when they bind to calci-
um. These fluorescent proteins, most commonly variants of GCaMP, are introduced into
neurons through genetic engineering. When neurons fire, calcium rushes into the cell;
GCaMP binds to calcium, resulting in a conformational change that permits fluorescence.

The preparation approach for introducing the GCaMP transgene varies significantly.

Viral injection methods generally result in higher and more rapid expression, though this
expression can be quite variable. For viral approaches, researchers perform surgery to
inject viral vectors carrying the calcium indicator genes. After this injection surgery, there
is a waiting period of days to multiple weeks for proper protein expression, with expres-
sion levels changing over time. In contrast, generating transgenic lines provides reliable,
heritable expression but may require months to years to develop and validate. For in vivo
imaging with either method, a surgical procedure to implant a clear window in the skull is
also necessary to provide optical access to the brain.

The technique requires substantial infrastructure - a typical multiphoton microscope
costs more than $500,000 (Holmes et al., 2022) and comes with significant service and
maintenance costs. Globally, we estimate the number of two-photon microscopes in ac-
tive use for neuroscience research to likely be between a few hundreds and a few thou-
sands. Additional costs include surgical supplies, viral vectors, and specialized habitua-
tion equipment. The price per hour falls into the range of $20-$100 (NYU Langone Health,
n.d., Sunnybrook Research Institute, n.d.)

Calcium imaging operates in an interesting middle ground between fMRI and electro-
physiology. The calcium indicator GCaMP7f, for example, has a half-rise time of about 60
milliseconds and half-decay time of about 150 milliseconds (Dana et al., 2019), while the
newer jGCaMP8f reaches half-rise times of about 2-7 ms and half-decay times of about
40 ms (Zhang et al., 2023). Typical two-photon systems can image at 30 Hz for a single
plane, though this drops to 1-5 Hz when imaging multiple planes to capture a volume.
Recordings can last from hours in acute preparations to months in chronic experiments.
Key factors limiting continuous imaging are photobleaching and photodamage (phototox-
icity). Photobleaching, the irreversible loss of indicator fluorescence due to light exposure,
is counteracted by cellular synthesis of new indicator proteins. Given typical fluorescent
protein half-lives of approximately 24 hours (Snapp, 2009), significant fluorescence recov-
ery through this replenishment can occur over hours to days. Separate from signal loss,
photodamage refers to light-induced cellular injury and physiological disruption, often
mediated by reactive oxygen species or thermal effects, particularly with two-photon mi-
croscopy (Grienberger et al,, 2022; Icha et al,, 2017). This damage can be subtle, affecting
cellular processes before morphological changes are evident (Icha et al., 2017). Since
both photobleaching and photodamage restrict imaging duration and can compromise
data integrity, careful optimization of light exposure is critical.
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The spatial resolution of calcium imaging is sufficient for individual neurons and even
their dendrites at approximately 0.5-1 um resolution. A typical field of view might be
500x500 um, containing hundreds of neurons. Standard two-photon microscopes can im-
age up to 600-800 um deep in the cortex, while three-photon systems can reach 1-1.3 mm
(Xu et al., 2024). For advanced systems, this results in up to 1 mm? volumes that can be
imaged at single-cell resolution. While these capabilities allow for recording large neuro-
nal populations, it's important to recall the inherent trade-offs in point-scanning systems
between neuron count, signal quality, and temporal resolution, as discussed previously.

Voltage Imaging

While calcium imaging indirectly measures neural activity through calcium transients,
voltage imaging directly detects changes in membrane potential. This allows voltage
imaging to capture the rapid dynamics of action potentials, spike timing, and subthresh-
old synaptic events, all of which remain invisible to calcium imaging (Peterka et al., 2011).
These capabilities are also valuable for mapping dendritic computation, axonal propa-
gation, and inhibitory/excitatory balance (Kulkarni & Miller, 2017), and position voltage
imaging as complementary to both calcium imaging and electrophysiology. Similar to
calcium imaging, both viral and transgenic approaches exist.

Voltage imaging relies on indicators that transduce membrane potential changes into op-
tical signals through two primary approaches: voltage-sensitive dyes (VSDs) and genet-
ically-encoded voltage indicators (GEVIs). VSDs are small organic molecules that often
employ mechanisms like electrochromism, where the electric field directly shifts the dye’s
absorption or emission spectrum, and that exhibit fast kinetics (<1 ms) and high sensitiv-
ity but lack cell-type specificity (Aseyev et al,, 2023). GEVIs, in contrast, are fluorescent
proteins engineered to be voltage-sensitive, typically using voltage-sensing domains
from proteins like Ci-VSP or microbial rhodopsins, enabling genetic targeting to specific
neuronal populations. However, GEVIs typically trade speed for sensitivity: most have
response times of 2-10 ms, limiting single-trial action potential detection in vivo (Kulkarni
& Miller, 2017). Both methods face challenges in signal-to-noise ratio (SNR) due to low
photon counts at high acquisition rates (>1 kHz) and phototoxicity.

Despite significant advances, voltage imaging still faces substantial challenges. The sig-
nal-to-noise ratio of voltage indicators generally remains problematic, with fluorescence
changes of only 2-50% per 100 mV compared to calcium indicators' signals that can
exceed 1000%. Moreover, voltage indicators are restricted to the membrane (since they
necessarily must detect the membrane potential), which is a much smaller volume than
the cytosol, and consequently, voltage imaging is often much dimmer than calcium imag-
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ing. These challenges create a tradeoff where faster indicators often require substantial
excitation light, causing photodamage that restricts recording sessions to typically just
minutes rather than the hours possible with calcium imaging. Furthermore, the mem-
brane localization requirement makes cell segmentation difficult, as adjacent labeled neu-
rons create overlapping “chicken wire" patterns instead of easily distinguishable volumes
(Kulkarni & Miller, 2017). Generally, voltage imaging to whole brain coverage in mammals
would require orders-of-magnitude improvements in sensor brightness, photostability,
and multiplexed imaging systems (Aseyev et al., 2023). Nonetheless, voltage imaging

has already proven invaluable for studying aspects of neural computation inaccessible to
other techniques, and its continued development holds significant promise, particularly in
organisms with relatively optically accessible brains.

Neurotransmitter imaging

While the methods discussed above capture electrical activity, understanding brain func-
tion also requires monitoring the dynamics of chemical signaling. Neurotransmitters and
neuromodulators orchestrate neural communication, from rapid synaptic transmission to
slower, widespread modulatory effects. Genetically encoded fluorescent biosensors have
emerged as powerful tools for visualizing these chemical signals in real-time, offering
insights that complement neural recordings. These biosensors generally operate by fus-
ing a specific ligand-binding domain - which recognizes a particular neurotransmitter or
neuromodulator - to a fluorescent protein, often a circularly permuted fluorescent protein
(cpFP). The binding of the target molecule induces a conformational change in the sen-
sor, which in turn alters the fluorescence properties of the cpFP. This change can then be
detected using standard microscopy techniques similar to those employed for calcium or
voltage imaging. A key advantage of this approach is the ability for targeted expression in
specific cell types or even subcellular compartments, typically achieved via viral vectors
(such as AAVs) or through the creation of transgenic lines.

The detection of fast excitatory neurotransmission, particularly glutamate signaling, has
been a significant focus. Early FRET-based sensors for glutamate, such as FLIPE, had
limitations in signal-to-noise ratio (SNR) and kinetic performance, which restricted their
application for studying rapid synaptic events (Hao and Plested, 2022). An important de-
velopment in this area was the introduction of iGIuSnFR (intensity-based glutamate-sens-
ing fluorescent reporter) by Marvin and colleagues (Marvin et al., 2013). This sensor,
which utilizes a glutamate-binding protein from E. coli (Gltl) fused with a cpGFP, offered
improved dynamic range and SNR, enabling the detection of glutamate transients with a
temporal resolution of approximately 100 ms in various experimental settings. iGluSnFR
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has since been widely adopted for studying glutamate dynamics in contexts ranging from
sensory processing and synaptic plasticity to investigations of pathological states (Hao
and Plested, 2022).

The initial utility of iGluSnFR prompted the engineering of numerous variants with refined
characteristics. These include versions with faster off-kinetics (e.g., iGluf, SF-iGluSnFR.
S72A) to better resolve successive release events, improved brightness and stabili-

ty through the use of superfolder fluorescent proteins (e.g., SF-iGluSnFR), and altered
emission spectra (e.g., R-iGIuSnFR1) to facilitate multicolor imaging (Helassa et al.,

2018; Marvin et al., 2018). To enhance spatial precision, iGluSnFR has also been fused to
synaptic proteins like Neurexin 1 for presynaptic targeting or Stargazin for postsynaptic
localization (Kim et al., 2020). These ongoing improvements have broadened the applica-
bility of glutamate sensors, for example, in quantal analysis and disease modeling. Similar
design principles have also been applied to create sensors for other fast neurotransmit-
ters, including GABA (e.g., IGABASNFR) and acetylcholine (e.g., iAchSnFR) (Marvin et al.,
2019; Jing et al., 2018).

For monitoring neuromodulators and neuropeptides, many of which signal through
G-Protein Coupled Receptors (GPCRs), a common sensor design strategy involves
engineering the native GPCRs themselves. This is typically achieved by inserting a cpFP
into an intracellular loop of the target GPCR. The design aims to preserve the receptor’s
natural ligand affinity while blocking endogenous G-protein coupling, thereby preventing
downstream signaling but allowing ligand binding to be transduced into a fluorescence
change (Girven et al,, 2022). This approach has yielded sensor families such as “GRAB"
(GPCR Activation-Based) sensors and others like dLight for dopamine. Currently, validat-
ed sensors are available for approximately 12-15 different neuromodulators and neuropep-
tides, including dopamine (e.g., dLight, GRABDA), norepinephrine (e.g., GRABNE), sero-
tonin (e.g., GRAB5-HT), acetylcholine (acting on muscarinic receptors, e.g.,, GRABACh),
and various opioid peptides (Muir et al.,, 2024; Sun et al., 2018; Feng et al., 2019).

These GPCR-based sensors generally provide temporal resolution (1-10 Hz frame rates)
and allow recording durations (hours to months) comparable to calcium imaging systems.
For example, the dopamine sensor dLight1.2 has reported response times of approxi-
mately 9.5 ms for binding and 90 ms for unbinding (Patriarchi et al.,, 2018). Spectrally dis-
tinct sensors permit simultaneous monitoring of multiple neuromodulators, such as green
dLight1.3b for dopamine alongside red GRABNE2m for norepinephrine (Muir et al.,, 2024).
Such tools have enabled new observations, for instance, tracking dopamine transients
with ~100 ms precision during reward-related behaviors (Mohebi et al., 2019) and iden-
tifying selective opioid peptide release during specific physiological states (Castro et al,,
2022). The imaging setups, data handling, and physical limitations for these biosensors
are largely analogous to those for calcium imaging. While the range of available sensors
continues to grow, expanding this toolkit to cover a broader array of neurochemicals and
further enhancing sensor performance remain active areas of research.
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Invasive perturbation experiments

Under one of the most common evaluation criteria for brain emulations, the emulation
should match the internal dynamics of the target brain, likely at least at the level of neural
activity. Meeting this benchmark requires accurately modeling each neuron’s input-out-
put function - how its outputs depend on the various inputs it receives. While passive
recordings constrain possible input-output functions, standard inputs and the fact that
different circuit configurations can produce identical activity patterns make it challenging
to gather enough data to uniquely identify each neuron’s parameters (Haspel et al., 2023).
This fundamental limitation persists even with extensive recordings under diverse condi-
tions, as the system’s inherent complexity and feedback loops mean that many different
parameter sets remain consistent with observed activity patterns (Pospisil et al., 2024).
This challenge of parameter identification from passive recordings alone, which exists
even when the connectome is known, means that experimental, perturbation methods
will also be key to generating accurate brain emulations.

In this discussion, we focus on perturbation techniques like optogenetic activation and
silencing, as well as patch-clamp electrophysiology, since these permit temporally and
spatially precise changes to neural activity. Other forms of perturbing neural activation,
such as ablation experiments, are generally not discussed, since these techniques are
often less useful for downstream computational modeling, as their exact influence on
circuit activity is typically less precise and often irreversible, complicating the modeling of
dynamic input-output functions.

Invasive perturbation methods provide a solution by breaking natural correlations be-
tween neurons and allowing direct manipulation of specific circuit elements. As estab-
lished in causal inference theory, determining genuine causal relationships generally
requires perturbations (Woodward, 2004; Pearl, 2009). In neural circuits specifically, es-
tablishing the causal influence of one neuron on another requires stimulating the former
while recording from the latter (Haspel et al., 2023). By precisely controlling individual
neurons or groups of neurons while recording from others, experimenters can drive cir-
cuits into novel states that would not arise naturally. Data from such causal perturbations
enables dramatically more sample-efficient fitting of neuronal input-output functions than
passive recordings alone (LaFosse et al., 2024; Wagenmaker et al., 2024). These targeted
interventions thus provide crucial constraints for reverse engineering neural computation.

Patch clamp recording, one of the oldest of these interventional techniques, provides
exact control and measurement of individual neurons' electrical activity. By forming a
tight seal with the cell membrane it enables direct manipulation of membrane potential
while simultaneously recording with sufficient temporal resolution to detect individual
action potentials and minute features of the membrane voltage dynamics. Dual patch re-
cordings are required to establish causal relationships between neurons, stimulating one
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neuron while recording from another. This method produces the highest-quality data for
determining input-output functions, with minimal off-target effects and exceptional signal
fidelity. However, patch clamp recordings are technically demanding, especially in vivo,
labor-intensive, and typically limited to short durations. Combined with the need for dual
recordings, this makes it impractical for mapping large circuits.

Optogenetics enables precise temporal control of genetically defined neuron populations
using light-sensitive ion channels or pumps (Rost et al., 2022). This approach allows
simultaneous manipulation of many neurons and can be combined with large-scale re-
cording methods. Optogenetic approaches can be used to both activate and silence sets
of neurons. Standard optogenetic approaches using fiber optics suffer from light scatter-
ing in tissue, limiting spatial resolution. However, methods like two-photon holography
combined with soma-targeted opsins can achieve single-cell resolution in vivo, though
spatial precision varies with the specific tools and light delivery systems used (Adesnik
and Abdeladim, 2021). While optogenetic stimulation offers millisecond-precise control,
recording neural activity in response to these perturbations presents additional challeng-
es. The most common recording method, calcium imaging, struggles to reliably detect
individual spikes, particularly in fast-spiking neurons, despite ongoing improvements in
indicators. Furthermore, optical crosstalk between stimulation and imaging wavelengths
can interfere with simultaneous recording and perturbation.

Beyond detailed circuit mapping, it is important to note that optogenetic perturbation
experiments linking neural population activity to behavior have the potential to contribute
significantly towards embodied emulations, possibly more so than whole-brain imaging
alone for certain objectives (Cowley et al., 2024). Optogenetic activation behavioral data
can be relatively cheap and fast to collect compared to some functional recording data-
sets, and can generate very useful, quantitative data (Cande et al., 2018). Furthermore,
such perturbation experiments directly test causal relationships, avoiding the interpreta-
tional problems of messy correlations often found in neural recording data, and directly
link neural activity to behavior.

Chemogenetics complements these approaches by offering sustained but less tempo-
rally precise control through engineered receptors (DREADDSs) that respond to specific
synthetic compounds (Roth, 2016; Minamimoto et al., 2024). After viral delivery of these
receptors to targeted neuron populations, systemic drug administration can modulate
neural activity over hours to days. While this approach enables manipulation of specific
cell types and even specific neural projections through retrograde viral vectors, its utility
for reverse engineering precise input-output functions is more limited. The slow kinetics
of drug action and intracellular signaling cascades, combined with the sustained na-
ture of the manipulation, make it impossible to probe the precise temporal interactions
needed to characterize neuronal computation. Instead, chemogenetics is most valuable
for behavioral studies and understanding the role of broader cell populations over longer
timescales.
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Data management: storage,
standardization, analysis

The advent of high-density neural recording technologies routinely generates terabyte
datasets that were unimaginable a decade ago. This scale presents both opportunities
and fundamental challenges for data management and analysis.

To illustrate - high-resolution scanning at 1 mm?® can generate about 60 GB of raw image
data per hour of continuous scanning (brain dimensions: ~150mm X 180mm X 150mm =
4,050,000 voxels at 4 bytes over 1 hour at 1Hz is 16.2 MB X 3600 = 58.32 GB). High-densi-
ty arrays recording at high sampling rates can produce 10-100 GB per hour of continuous
recording. A typical two-hour calcium imaging session at 30 Hz can generate 500 GB to
2 TB of raw data, depending on the field of view and resolution (Stringer et al, 2024). Raw
data includes both the brain data and associated behavioral measurements.

Nowadays, functional recordings in neuroscience are often shared with the community
via dedicated data repositories. The appendix provides a list of over 50 such repositories.

Because large scale neuroscience projects can generate huge data volumes, individual
academic labs often do not make their raw data easily accessible, and instead state that
the data is “available upon request” (Tedersoo et al., 2021). Public, easily accessible data
sharing has not been the default over the past two decades (although it has long been
pioneered by dedicated organizations like the Allen Institute) and is only slowly finding
adoption, as some funders make it a requirement. Only recently have efforts like Neuro-
data Without Borders (Ribel et al,, 2022) started to standardize neurophysiology data,
making them more comparable and interoperable. From private conversations with multi-
ple experts, they assume that less than 5% of all the existing data is publicly available (in
any form) at this point. In conversations with computational neuroscientists, the anec-
dotally reported access to multiple consistent and well-cleaned datasets is one of the
main limiting factors to computational models making use of said data. This data barrier
also prevents non-neuro-specialist engineers from other fields from getting involved and
making meaningful contributions.

We can think about data repositories in 4 categories.

1. Preferred repositories: these comprise the majority of the well-formatted, easily
accessible data: OpenNeuro, DANDI, Brain Image Library, EBrains, FigShare, Allen
Institute, or Zenodo.

2. Single datasets: Study Forrest and FlyWire are examples of large datasets hosted
on their dedicated websites.
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3. Other repositories, such as CRCNS, Neurovault, and others, are often much less
well-maintained and/or easily accessible.

4. Meta-repositories, registries, etc.: neuinfo does not host data and just has meta-
data scraped from elsewhere. OpenEphys predominantly lists other repositories,
and the data it does link might just be repeats of previously mentioned repositories.

While some data repositories offer APIs facilitating mass data download, others may be
impossible to scrape due to absent or scattered metadata; despite this, a repository’s
user-friendliness correlates positively with data volume, allowing access to significant
portions of data across various modalities. It is unclear how much duplication exists
across repositories. Heterogeneity of the data quality is another issue, with image data
particularly vulnerable to quality issues like poor resolution.

The standardization of neurodynamic datasets presents unique challenges due to the
extraordinary complexity of neural recordings across different temporal and spatial scales
across different organisms. These technical challenges are compounded by sometimes
significant methodological variations across laboratories and institutions. Different re-
search groups often employ distinct preprocessing pipelines, quality control procedures,
and analysis methods, making direct comparisons between datasets difficult. Even within
the same recording modality, variations in experimental protocols, equipment configura-
tions, and environmental conditions can introduce systematic differences that complicate
data integration. The situation is further complicated by inconsistent documentation prac-
tices, with many datasets lacking crucial metadata about preprocessing steps, quality
control measures, or experimental conditions.

The raw data distributed needs various post-processing steps. For calcium imaging, for
instance following motion correction, cell identification and segmentation algorithms can
process hours of recording in parallel. Real-time processing of 10,000 neurons requires a
modern workstation and a high-end GPU. Scaling to 100,000 neurons demands at least
128GB RAM and multiple GPUs, with processing taking 3-5x real-time. At the extreme
end, analyzing 1,000,000 neurons requires distributed computing systems with at least
1TB of RAM, processing at 10-20x real-time. (Stringer et al 2024) The primary bottlenecks
emerge in population analyses that require pairwise computations between neurons - for
instance, a correlation matrix for 100,000 neurons requires 80GB of RAM just for storage.
Scaling these analyses to even larger populations (millions to billions of neurons) would
require fundamental algorithmic innovations. Current approaches often scale quadratical-
ly with neuron count, making them impractical for large populations.

Recently, Mineault et al. published an analysis of the “contents of DANDI, OpenNeuro,
iEEG.org, as well as large-scale individual datasets” as part of their NeuroAl for Al Safety
roadmap (Mineault et al., 2024). We will quote them verbatim here.
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IEII3EY Availability of neural data to train a large-scale model

(Reproduced from Mineault et al, 2024)

“The past decade has seen an explosion in the quantity of neural data freely available online. These public datasets
represent a unique opportunity to learn good representations of neural data for a variety of downstream tasks,
including brain-computer interfaces, clinical diagnoses for computational psychiatry and sleep disorders, and basic
neuroscience.

Here we present a breakdown of the available data sources from an analysis of the contents of DANDI, OpenNeuro,
iEEG.org, as well as large-scale individual datasets. Some of the highlights from this analysis include:

There are around 100,000 hours of neural data available in freely accessible archives.

There are roughly 3.3 million neuron-hours of single-neuron recordings from animals.

The most abundant data type in terms of number of hours is intracortical EEG in humans-an invasive modality
generated from the typically continuous, week-long recordings performed during epilepsy monitoring.

Single neuron data is concentrated in a few datasets; the top 10 largest datasets in terms of neuron-hours
account for more than 94% of total neuron-hours across all of DANDI. These come mostly from zebrafish and
mouse, with one dataset from macaques.

Large fMRI recordings are split into two categories: broad neuroimaging surveys, including HCP and UK
Biobank, which scan many people for a short time; and intensive neuroimaging datasets, including Courtois
Neuromod and the Natural Scenes Dataset, which scan few people for a very long time.’
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DANDI: single neuron recordings

Mouse
Rat
Macaque
Human
Zebrafish
@ Marmoset

oo

® Ephys
Q M Optical

number of subjects

20 30 40 50 60 70
hours of recorded data per subject

State of Brain Emulation Report 2025

—125



State of Brain Emulation Report 2025 Part 3: Methods for Brain Emulation

Connectomics:
Brain structure reconstruction

Connectomics, the endeavor to reconstruct the brain’s intricate structural architecture,
fundamentally depends on imaging technologies capable of resolving the smallest
elements of neural circuitry. The smallest unit here is either the synapse, between 200
and 800 nm wide (Sheng and Kim, 2011), the synaptic cleft between two synapses, about
20-30 nm wide (Yang & Annaert, 2024), or gap junctions between neurons, which are
approximately 2 nm wide. The smallest (unmyelinated) axons are around 50 nm (Helms-
taedter et al., 2013) in width and can reach from the motor cortex to the lower parts of the
spine. This necessitates voxel sizes at the single-digit to low double-digit nm scale. The
connectomics community typically cites resolution requirements between 10-20 nm per
voxel to resolve synapses properly (that is, each pixel in an image should represent a 3D
cube of the brain of the dimensions of say 10x10x10 nm) (Jefferis et al.,, 2023). Dense con-
nectomics refers to the analysis of all neurons and their connections within an analyzed
volume. This is often accompanied by non-neural cells such as astrocytes, microglia, oli-
godendrocytes, and vascular cells. Staining for these approaches often utilizes chemicals
that broadly bind to biomolecules within the samples (such as lipids) to produce recog-
nizable subcellular divisions. Sparse connectomics, on the other hand, captures a subset
of the neurons.

For an excellent illustration of the sizes of neurons and synapses, see Figure 1in lascone, 2020 where a
pyramidal neuron of mouse primary somatosensory cortex is traced and individual synapses identified. Due
to copyright restrictions, we cannot replicate this image here.

Santiago Ramén y Cajal’s pioneering work established synapses as the cornerstone of
neuroscience - a view later confirmed by electron microscopy in 1956 (Jekely and Yuste,
2024). Electron microscopy development reached resolutions less than ten nanometers in
the 1930s and, in 1944, broke 2 nm resolution (Haguenau et al.,, 2003), far surpassing light
microscopy constrained to a lateral resolution of ~250 nm and an axial resolution of ~550
nm by the diffraction limit (Huang et al., 2010).

The first connectome, a complete map of all neurons and their synaptic connections to
each other, was imaged by John White, Sydney Brenner and colleagues in the 1980s. It
was Brenner who first thought to do this “radical experiment,” according to a 2020 article
in Cell (Abbott et al,, 2020):
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“...might it be possible to obtain the complete wiring diagram of an animal’s nervous system
by serially sectioning it into many exceedingly thin slices, imaging each of these sections at
high resolution with an electron microscope (EM), and painstakingly tracing each neuron’s
branches and synaptic connections with other neurons? This audacious idea became reality in
1986 when Brenner, John White, and several other extraordinary scientists produced a 340-
page magnum opus, “The Structure of the Nervous System of the Nematode Caenorhabditis
elegans” (with the running head “The Mind of a Worm”)...”

Brenner's work was decades ahead of its time. The worm connectome had to be recon-
structed by hand because digital image processing tools at that time were inadequate.
Brenner and his colleagues at Cambridge’s Laboratory for Molecular Biology imaged and
reconstructed all 300 neurons of the highly stereotyped worm neurons, combining eight
different individuals, tracing and connecting each neuron'’s spindly branches by hand. An
intuitive way of illustrating this process is to compare it to satellite images of the earth
(see figure below): Not only do you need to take images at extremely high resolution, you
also need to determine (encircle individual areas and colorize) and annotate objects (save
meta information) in order to make the helpful map. The first worm connectome paper
has been cited thousands of times, and almost every year since its publication more than
three decades ago, the rate of citations has increased.Still, it took neuroscientists nearly
40 years of work to go from a 300 neuron worm connectome to a 140,000 neuron fruit fly
connectome.

Neurons make new connections and abandon unused synapses. Some areas even
withstand the trend of declining neuron numbers over life, and we see new neurons
emerge. Neuronal activity and other variables impose changes on the connectome, which
influence long-term information processing and thus represent the structural equivalent
of learning over time. Modern studies have revealed multiple timescales of structural plas-
ticity, from rapid synaptic modifications occurring within minutes to slower axonal and
dendritic remodeling processes that can take days or weeks. Understanding the rules
governing these structural modifications may be as crucial as mapping the connections
themselves, as these rules determine how the network can reconfigure itself in response
to experience and environmental demands. To lean into our satellite image of the world
metaphor again, we want to have a dynamic video of the world, rather than a single static
picture. Despite progress in methods to study neuroplasticity (Velicky et al.,, 2023), reliably
tracking morphological dynamics and, through that, understanding neuroplasticity largely
remains beyond what the field is capable of.
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G Comparison of a map of the globe and connectomics

) Current Google Maps maximum zoom is approximately 1 pixel = 15cm on Earth (EleJofe| AU BN TR E e X-NnE CRyEIu T
most advanced US military satellites can achieve resolutions of up to 6 cm per pixel. (Richardson, 2024). An illustration in the image below
(source). Scanning the human brain at the resolution necessary to reconstruct a connectome (~20nm sized voxels necessary to trace syn-
apses) is the same as having a map of the world 10x sharper than the current best satellites (with 6371 km radius, earth’s total surface area
is ~510 million km?, which at 1 mm? resolution / pixel = 51x10% pixels. 1200 cm® average human brain volume at 20nm isotropic voxels size
is 1.5x10%voxels.). B) Figure illustrating various stages of image processing in comparison to raw satellite data: following registration (left),
following segmentation and tracing (center), and following annotation (right). Source: Schlegel, 2024
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Methods of reconstructing the brain

Reconstructing brain structure at resolutions necessary to derive the connectome pushes
the boundaries of imaging techniques. On a high level, various imaging approaches use
electron beams and various forms of electromagnetic waves, ranging from hard X-rays to
visible light, and use one or multiple tissue processing techniques such as staining, tissue
expansion, or molecular annotations. All static brain structure imaging methods perfuse
the brain with chemicals to stabilize its structure during euthanization, after which it is
carefully extracted and undergoes subsequent tissue preparation steps. The purpose of
such tissue processing varies from increasing visibility of important structures to com-
pensating for the resolution limitations of imaging techniques like X-ray or standard light
microscopy.

The figure below demonstrates how quickly even rare errors tracing neurons across the
vast number of images can interfere with the successful reconstruction of a neuron (a
1mm long axon imaged with the above-mentioned axial resolution of 20 nm compris-

es 50,000 images). Tissue loss and damage increase the difficulty of following neurons
across different sections during final reconstruction. Even the brains of relatively small
organisms must be sliced to arrive at processable sizes that match equipment capacity,
diffusion speeds, and parallelization across multiple machines. So far, 1 mm-thick samples
have routinely demonstrated robust results. However, cutting brain tissue into ~1 mm
slices with “ultra-smooth” vibratomy becomes increasingly difficult with bigger brains.

As we will see in the following chapter, tracing neurons via morphology relies on the

high resolution and subsequent time-consuming reconstruction and error correction. If

it were possible to uniquely identify the same neuron at its soma and far end, that would
loosen the hampering constraint of requiring virtually error-free tracing. This is the idea of
barcoding: place a uniquely identifiable molecule in each neuron that can unambiguously
determine the identity of each cell. Then, even if it were impossible to trace a neuron con-
tinuously through tissue, the expressed barcode would allow correct identification of dis-
tal synapses. Loss of an entire section or slicing errors would be much less catastrophic
than in any morphologic approach, as barcoding would not rely on perfect traceability.

Barcodes can come in many forms, and scientists are becoming increasingly creative,
generating more ambitious variants.
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IEIER] Replication of the Tyranny of Scale Figure from the NIH Brain Connects Work-
shop Series

Even at relatively low error rates, tracing accuracy deteriorates given high numbers of imaging sections with large
brain volumes.
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Structural imaging approaches

Morphology staining approaches are the most common method in connectomics. Tis-
sue sections are completely stained to highlight morphological features, particularly

cell boundaries (membranes) and protein densities. The advantage is that “everything”
is visualized, and the technique is general to any tissue type. The disadvantage is that
imaging at a high enough resolution to resolve desired features is time-consuming and
data-intensive. Electron microscopy, connectomics and X-ray approaches typically use
osmium or other heavy metal stains, whereas antibody- or lipid-based morphology stain-
ing is used in light microscopy.

Electron microscopy

Electron microscopes use electron beams that are accelerated through a high voltage
and are precisely guided by electromagnetic lenses to focus on a sample with nanometer
precision. As these electrons interact with the sample’s atoms, various signals are gen-
erated - such as secondary electrons, backscattered electrons, or transmitted electrons
- depending on the type of microscope. Specialized sensors detect these signals, which
are then processed and transformed into highly detailed images revealing the sample's
structure, composition, and even atomic arrangements. For Volume Electron Microscopy
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(VEM), series of such 2D images are first acquired and then computationally reconstruct-
ed into 3D volumes. The imaging techniques for acquiring these series primarily fall into
two categories: Transmission Electron Microscopy (TEM)-based and Scanning Electron
Microscopy (SEM)-based approaches.

TEM-based VEM techniques, such as serial section TEM (ssTEM), involve physically cut-
ting the biological sample into a series of ultra-thin sections (typically 30-100 nm thick).
Each section is collected on a support grid and imaged individually in a TEM, where the
electron beam passes through it to form a 2D projection image. These serial 2D images
are subsequently aligned and stacked to reconstruct the 3D volume. TEM generally offers
excellent lateral resolution due to the thinness of the sections and the physics of electron
transmission, but its axial resolution is inherently limited by the physical thickness of each
section. Advances like GridTape TEM (Phelps et al., 2021) further automate section han-
dling and imaging for sSTEM, significantly increasing throughput

(Peddie et al,, 2022).

SEM-based VEM techniques typically involve iteratively imaging the surface (or "block-
face") of a sample within the SEM, then removing a thin layer to expose a new surface
for the next image. Several approaches exist. Focused lon Beam SEM (FIB-SEM) uses a
focused ion beam (e.g., gallium) to ablate or “mill" away very thin layers (typically 5-20
nm) from the sample surface. After each layer's removal, the newly exposed block-face is
imaged by the SEM using backscattered or secondary electrons. This process allows for
very high axial resolution, making isotropic voxels achievable. For large-volume acquisi-
tions, where milling proceeds over significant depths (e.g., hundreds of micrometers), the
milling front can become uneven; periodic replanarization steps are often necessary to
re-flatten the sample surface and maintain a consistent cutting plane. Serial Block-Face
SEM (SBF-SEM) employs an ultramicrotome (a diamond knife) integrated directly inside
the SEM chamber. The knife cuts a thin section (typically 25-100 nm) from the block-face,
which is discarded, and the newly exposed surface is then imaged. SBF-SEM is generally
faster for very large fields of view compared to FIB-SEM but offers lower axial resolution.
Array Tomography (AT) involves first cutting an entire series of ultra-thin sections, col-
lecting them in an ordered array (e.g., on a silicon wafer or specialized tape), and then
imaging them sequentially in an SEM. While its z-resolution is limited by section thick-
ness (e.g., 30-50 nm), AT uniquely allows for post-section staining, re-imaging of regions
of interest, and is well-suited for correlative light and electron microscopy. For very large
tissue samples, they may first be subdivided into more manageable “slabs” or ribbons, for
instance using a hot knife, before serial sectioning for AT (Peddie et al., 2022).

To accelerate the inherently slow process of SEM imaging, multi-beam SEM (mSEM)
systems have been developed. As early as 2015, Zeiss produced 61-beam SEMs capable
of approaching GHz data acquisition speeds (Zeidler et al, 2015). Current state-of-the-
art devices feature 91 beams (Riedesel et al., 2019). In mSEM, the primary electron beam
is split into multiple sub-beams, each scanning a small region of the sample in parallel
to simultaneously generate images of the underlying tissue. These individually captured
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high-resolution images are then computationally stitched together to form a larger com-
posite image. While mSEMs can achieve burst imaging speeds of up to 3.6 GHz (e.g., ~40
MHz per beam for a 91-beam system), the effective rate, when projected over 24/7 scan-
ning operations considering factors like downtime and sample exchange, typically falls
to 100-200 MHz. In this context, 1 Hz is equivalent to imaging one voxel per second. To
put this in perspective: scanning a 500 mm? volume of mouse brain (approximately 500
petavoxels at 10nm isotropic resolution) would take about twenty 91-beam EM systems
roughly four years, assuming continuous 24/7 scanning at an effective imaging rate of
200 MHz per system.

Only a handful of facilities globally possess the multiple, high-throughput vEM systems
required for such large-scale endeavors. Setup costs for a single advanced vVEM instru-
ment range between $0.5 million and $10 million, with similar maintenance costs over 3-5
years. Depending on uptime and specific operational context, costs per hour can range
between $1,000 and $5,000.

IEIEE] Replication of Wellcome Trust Figure on EM Datasets, data see here

The imaging speeds and volumes for electron microscopy in connectomics have increased substantially over time.
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Expansion Microscopy with Dense Labeling

In 2015, Chen et al. introduced expansion microscopy (ExM), a revolutionary technique
achieving initial resolutions as fine as 70 nm. Electron microscopy (EM) is constrained
by physics to a resolution limit of 0.23 nm (Penczek, 2010). In contrast, traditional light
microscopy is constrained to a lateral resolution of ~250 nm and an axial resolution of
~550 nm by the diffraction limit (Huang et al., 2010). Expansion Microscopy effectively
circumvents the diffraction limit by isotropically physically expanding the tissue sample
rather than attempting to improve the microscope'’s resolving power. Since then, multiple
authors have demonstrated the dense labeling of protein (M'Saad and Bewersdorf, 2020;
M'Saad et al., 2022) and lipid components (Karagiannis et al,, 2019; Shin et al, 2025).

ExM pipelines physically expand biological samples by embedding them in swellable
hydrogels (see figure). Routine expansion protocols can expand brains between 4- and
16-fold, while recent iterative and non-iterative expansion advances allow expansion up
to 40-fold and beyond. Brain tissue sections (typically 50-70 um thick) are first fixed, then
embedded in a first hydrogel. After denaturation, the sample expands in water. The sam-
ple is then re-embedded in a second neutral gel, followed by a third expansion gel with
a non-cleavable crosslinker. During this process, proteins can be labeled with antibodies
and pan-stained with fluorescent dyes to reveal ultrastructure. For instance, the final
expansion described by M'Saad et al. achieves approximately 24-fold total enlargement.
This enables the resolution of features as small as ~15 nm in the pre-expanded sample
using standard confocal microscopes, effectively bypassing the diffraction limit (M'Saad
et al., 2022). The entire process takes 4-5 days from initial fixation to final imaging, with
the key advantage that no specialized equipment, such as expensive electron micro-
scopes, beyond a standard confocal microscope, is needed.

IEIMEE] Expansion Microscopy Process

llustration of stepwise processing of brain tissue in the context of expansion microscopy. Credits to Eon Systems PBC
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IEIMEZ] Replication of Figure by M'Saad et al., 2022: pan-ExM-t workflow for mouse
brain tissue sections.

(a-f) Experimental workflow. (g): Timeline summarizing the protocol. Abbreviations: FA: formaldehyde; AAm: acryl-
amide; NaOH: sodiumhydroxide; DHEBA: N,N'-(1,2-dihydroxyethylene) bis-acrylamide; SDS: sodium dodecyl sulfate;
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Expansion microscopy is beginning to bridge the gap between the molecular specificity
of light microscopy and the synaptic resolution required for dense connectomics. Two
complementary dense-labeling strategies have been demonstrated in brain tissue for
ExM-based ultrastructural contrast: (i) pan-protein labeling (pan-ExM/pan-ExM-t) that
produces dense, EM-like protein-density contrast and is compatible with immunostaining
(M'Saad et al.,, 2022), and (ii) dense, continuous membrane labeling (umExM) for na-
noscale visualization of membranes in intact tissues (Shin et al., 2024).

A recent proof-of-principle for dense light-microscopy connectomics is LICONN (Tavakoli
et al,, 2025). The method uses pan-protein labeling with iterative expansion, combined
with a standard spinning-disk confocal microscope for imaging and readout. In mouse
cortex and hippocampus samples, LICONN demonstrated an effective optical resolution
of ~20 nm laterally and ~50 nm axially (~9.7 X 9.7 X 25.9 nm? voxel size), and an effective
imaging throughput of ~17 MHz (~0.001 mm?® imaged over 6.5 hours). For reconstruction,
Tavakoli et al. adopted a pipeline directly from EM connectomics, using automated seg-
mentation with flood-filling networks (FFNs) followed by manual proofreading, yielding
reconstruction accuracy comparable to state-of-the-art EM pipelines (Tavakoli et al.,
2025).

IEIMEE] Replication of Figure 1in Collins et al., 2024,

Comparison of raw image data in serial section transmission electron microscopy (top) and expansion confocal light
microscopy (bottom). Note the 1-2 order of magnitude higher resolution. Image from Collins et al.
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Unlike EM pipelines, LICONN natively supports molecular annotation in the same
high-resolution volume. Presynaptic and excitatory postsynaptic markers (e.g., bassoon
and SHANK?2) and inhibitory postsynaptic markers (gephyrin) are imaged together with
the dense structural channel, enabling direct classification of synapses. Importantly,
astrocytic connexin-43 labeling reveals gap junctions, allowing electrical coupling to be
mapped at scale -- something that is typically difficult to recover with EM alone. Further-
more, because the structural and molecular channels are perfectly aligned, the data can
be used to train deep learning models that predict molecular locations from the structural
channel alone. The authors demonstrated this by training predictors for presynaptic and
postsynaptic markers, achieving high accuracy on held-out data. This strategy can signifi-
cantly reduce the number of staining rounds required when scaling up imaging to larger
volumes, as the structural map can be used to infer select features.

Throughput is the main limitation at present. LICONN's ~17-MHz rate is well below
multi-beam EM, but those EM throughputs depend on scarce, multi-million-dollar sys-
tems; by contrast, the LICONN result came from a standard, relatively inexpensive
spinning-disk setup. The current throughput is thus a function of the chosen readout, not
a fundamental limit of the sample preparation, which is not tied to any specific imaging
modality. The clear path to scaling, therefore, involves pairing LICONN-Ilike sample prepa-
ration with optics designed for high-speed volumetric imaging. Such a combination could
achieve EM-competitive throughputs while preserving the molecular annotation that EM
lacks. This potential to match EM speed and resolution on accessible equipment makes
dense ExM a compelling route to scalable molecularly annotated connectomics.

X-ray synchrotron approaches

X-ray synchrotron approaches use high-energy X-rays to visualize tissue architecture
and cellular features. The method can leverage the natural contrast between different
cellular components based on their electron density and elemental composition for
minimal preparation requirements. It can also use heavy metal stains like osmium or gold
to enhance the contrast of specific features, particularly membranes and synaptic pro-
teins. These stains also increase acquisition time (Ahn et al., 2013; Depannemaecker et
al.,, 2019). Special chemicals can be leveraged to increase radiation resistance of samples
(Bosch et al., 2023). Imaging is also generally non-destructive, meaning the same sample
can be imaged through other modalities.

Spatial resolutions - not limited by diffraction, but rather by the x-ray cross section of
elements with low atomic numbers in unstained samples and, more generally, by the risk
of damage caused by high x-ray radiation doses - down to roughly 10 nm are theoretically
possible in frozen hydrated samples (Howells et al., 2009). The primary advantages are
that the high penetration depth of X-rays allows for imaging of large tissue volumes (sev-
eral mm?) at resolutions approaching 30 nm (Stevens et al,, 2020; Du et al.,, 2021).

The drawbacks are also multiple, however. X-ray approaches for structural brain mapping
are far less developed than their EM and light-microscopy counterparts. This is partly
because imaging generally requires access to a beamline at a synchrotron facility, with
beamlines heavily oversubscribed. Scalability-wise, although simulations are encourag-
ing, significant progress is needed, particularly in improved detectors, before scalability

could be sufficient for imaging whole mammalian brains (Collins, 2023; Du et al., 2021). 36
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Recent developments include sub-100 nm imaging and dense reconstruction of fly and
mouse brain tissue using x-ray holographic nano-tomography (Kuan et al., 2020), correla-
tive studies involving in-vivo recordings, x-ray synchrotron microtomography and electron
microscopy (Bosch et al., 2022), the establishment of the SYNAPSE consortium for imag-
ing a whole human brain at 300 nm resolution (Stampfl et al., 2023), the development of
protocols for highly multiplexed x-ray fluorescence (Strotton et al., 2023) and successful
imaging of individual synapses through x-ray ptychography (Bosch et al., 2023).

For a visualization of X-ray synchrotron approaches, see Figure 1in Dyer et al,, 2017 Due to copyright constraints, we
cannot replicate this image here.

Barcoding approaches

Protein barcoding for connectomics emerged from the convergence of two key techno-
logical advances: site-specific DNA recombination and fluorescent protein engineering.
The watershed moment came with Brainbow in 2007, which leveraged Cre/lox recom-
bination to stochastically express different ratios of fluorescent proteins in individual
neurons. This approach achieved roughly 100 distinguishable color combinations through
the differential expression of red, green, and blue fluorescent proteins. The initial proof-
of-concept in mice demonstrated the potential for unique cellular labeling, though it also
revealed fundamental challenges in achieving consistent expression levels and maintain-
ing color fidelity across large tissue volumes. Expression in different cell types is uneven,
trafficking of these proteins is uneven, and fluorescent staining is uneven. A distal axon
may display a slightly different barcode than the soma within the same neuron, compli-
cating correct identification. Subsequent iterations expanded the technique to other mod-
el organisms, notably Drosophila, while attempting to address these limitations through
improved fluorescent proteins and more sophisticated genetic designs (Livet et al., 2007,
Pan et al,, 2011, Cai et al., 2013, Leiwe et al., 2024)

The most advanced approaches combine three key elements: genetic targeting, pro-
tein-based labeling, and multi-round imaging. In current protocols, viral vectors deliver
genetic constructs encoding multiple protein markers, each under the control of an
independent promoter. These markers can be fluorescent proteins, epitope tags, or engi-
neered protein scaffolds designed for subsequent antibody labeling (see figure by Serra-
no, 2022). The overall process requires multiple rounds of staining, washing, and imaging.

Such barcoding approaches face three distribution problems when delivery is carried out
via viral vectors:
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1. Distribution to all neurons.
2. Even distribution among all neurons.

3. Distribution within neurons.

For a visualization of barcoding, see Figure 1in Serrano, 2022. Due to copyright constraints, we cannot print the figure
here.

In 2020, Shen et al. combined Brainbow with multi-round immunolabeling in expansion
microscopy, which allowed the unique identification of neurons and reconstruction of
their structure, including imaging up to 15 different stained targets (Shen et al.,, 2020).
Notably, super-multicolor Tetbow allows reconstruction despite two sections of a neuron
being separated, beginning to leverage the core strength of barcoding (Leiwe et al. 2024).
In principle, methods like Tetbow could scale to whole-brain connectomics when com-
bined with expansion microscopy, pan-protein, and/or lipid staining.

However, achieving whole-brain connectomics using barcoding is not currently possible.
The focused research organization (FRO) E11 is actively working on advancing barcoding
technologies for whole mammalian brains.

The theoretical limits of protein barcoding intersect with fundamental biological con-
straints and technical capabilities. In mammalian brains, where individual neurons form
between 8,000 and 30,000 synapses (though individual connections between neurons
can consist of up to 60 synapses or more - even if a neuron makes 10,000 synapses with
other neurons, it may connect to only a few thousand unique neurons), the mathematics
of unique identification become particularly challenging. With a 25-bit binary code (2%
combinations), statistical analysis reveals that in a human brain of 80 billion neurons,
approximately 10 million neurons (0.02%) would share a barcode and at least one syn-
aptic connection. While this error rate might seem problematic, it compares favorably
with current electron microscopy reconstruction error rates, particularly considering that
spatial information can help resolve ambiguous cases. It is important to note that whether
state-of-the-art barcoding methodology can capture most neurons and especially most
synapses will need to be verified in statistical comparisons against “ground-truth” elec-
tron microscope data in small, similar reconstructed samples.

Reaching almost all neurons with the viral vectors carrying the barcodes is difficult. This
will require further breakthroughs in delivery, such as the intravenous bCap1 AAV capable
of reaching 5-20% of cells in the brain. (Dyno Therapeutics, n.d.) Various virus-based plat-
forms (lyssavirus, Sindbis, HSV, etc.), better intravenous delivery, high-density intra-CNS
injections, and creative approaches to multi-site injection throughout the brain will be
required - or perhaps all four simultaneously.
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Notably, nucleic acid barcoding approaches exist, where unique RNA/DNA barcodes
(typically 15-30 nucleotides) are introduced into neurons using viral vectors or genetic
engineering and then use sequencing as a readout. The field emerged from spatial tran-
scriptomics methods developed in the 2010s. The transition to connectomics applications
began with MAPseq (Kebschull et al.,, 2016), which introduced high-throughput projection
mapping, tracing where neurons from one brain region send their axons, without detailing
individual synaptic connections. For connectivity attempts (BRICseq): Although not yet
working at scale, there are current efforts to barcode neurons and transform connectom-
ics from an imaging problem to a sequencing and analysis problem (Huang, 2020). Most
recently, ExBarSeq (Goodwin, 2022) combined barcoding with expansion microscopy to
improve spatial resolution to ~20 nm. However, these methods remain more powerful for
projection mapping than detailed connectivity analysis. Current throughput for projection
mapping reaches 100,000+ neurons per experiment. BARseq, for instance, employs in situ
sequencing of both endogenous mRNAs and synthetic RNA barcodes to infer long-range
projections of neurons across whole mouse forebrain hemispheres, analyzing millions

of cells (Chen et al, 2024). In contrast, detailed connectivity mapping remains limited to
hundreds of neurons due to challenges in reliably getting barcodes to and reading them
from synapses.
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Data storage and processing

Storage & Bandwidth

While high-throughput imaging of mammalian brains demands extraordinarily effective
bandwidths, existing technology can largely meet these requirements, especially when
combined with modern compression methods.

A human brain is roughly 1000-1400 cm?, and such a volume, if imaged at 10 nm isotropic
resolution, represents roughly 1.2 zettavoxels. Assuming 2 bytes per voxel and a total ac-
quisition time of about a year, grayscale imaging thus requires a total effective bandwidth
of about 600 terabits/s. Multiplexed imaging scales bandwidth requirements linearly with
the number of colors; thus, streaming 30-color imaging data requires a total bandwidth
of roughly 18 petabits/s. However, state-of-the-art compression methods already demon-
strate a 128x reduction in data size without compromising subsequent reconstruction (Li
et al,, 2024). Thus, data compression at the source could see practical bandwidth require-
ments decrease to about 140 terabits/s for 30-color imaging and about 5 terabits/s for
grayscale imaging. Beyond these initial compression approaches, as our understanding
of neural tissue matures, additional representations such as connectivity graphs and neu-
ron skeletons could complement the detailed data, potentially offering further significant
reductions in storage requirements. However, for early whole-brain reconstructions, pre-
serving sufficient raw data to resolve subcellular structures, including synaptic vesicles
and cellular organelles, will likely remain essential, as it is not yet clear which biological
details are essential for faithful emulation.

Bandwidth requirements thus represent an important challenge, particularly if no com-
pression is used. However, they are not far beyond what existing technology enables in
fields such as high-energy physics. Indeed, experiments within the LHC at CERN can
produce roughly a petabyte (that is, eight petabits) of raw data per second, with various
filtering and compression algorithms within the sensor decreasing the effective data rate
to a more manageable 50 terabytes (400 terabits) per second (Radovic et al., 2018). Such
high data rates, of course, require highly performant networking infrastructure, but that
too is not far beyond current capabilities: Google data centers, for example, have demon-
strated within-datacenter bandwidths of up to 13 petabits/s (Vahdat, 2024). As long as
compression is used and processing happens mostly within a data center co-located with
the imaging facility, imaging bandwidth should thus not represent a fundamental bottle-
neck to efforts aiming to image a whole human brain in roughly a year, provided the level
of investment is sufficient.
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IEIMIET) Bandwidth Requirements by Resolution and Channel Count.

Effective total bandwidth requirements for human brain imaging in less than one year at 10 nm isotropic resolution.
(over one year)
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Depending on the compression factor, the data storage necessary for a human connec-
tome would be on the order of 1 Peta to 100 Exabytes, with an additional 2-3x factor to
accommodate for backup infrastructure. Petabyte storage capacity is common for small
to mid-sized data centers. Most large data centers operated by commercial providers

do not disclose their official capacity, but can store up to several exabytes (10%) of data
(Blackblaze, 2024). The European Centre for Medium-Range Weather Forecasts (ECM-
WF) generates 400 terabytes of new data daily and processes this with previous dates to
make predictions (ECMWF, 2024). Companies like ByteDance process over 500 PB/day
(Wu et al.,, 2024) while the most prominent actors, such as Google, Meta, or Microsoft, do
not disclose official numbers. For 2025, the total globally available digital storage capacity
is estimated to be around 16 zettabytes (Statista Inc., 2021).

— 141



State of Brain Emulation Report 2025 Part 3: Methods for Brain Emulation

Neuron Reconstruction

Neuron reconstruction aims to recreate the three-dimensional connectome from the vast
quantities of microscopy data produced through imaging. This complex process generally
involves three main stages: data preparation (including registration), automated segmen-
tation and tracing, and meticulous proofreading. Each stage presents unique challenges
and opportunities for automation.

The first critical step is data preparation, where raw image data is processed for down-
stream analysis. A key bottleneck here is registration: aligning adjacent scans to ensure
spatial consistency of neural structures. Misalignments, often caused by imaging artifacts
or slight sample movements, are a dominant cause of errors in subsequent automated
neuron reconstructions (Popovych et al,, 2024). Poor alignment can make it impossible for
algorithms to correctly follow fine neurites across section boundaries. Fortunately, recent
advancements in machine learning have significantly improved alignment accuracy, with
algorithms now addressing artifact removal, de-warping, and noise reduction, in some
cases reducing genuine misalignments to as low as 0.06% of image pairs (Popovych et
al,, 2024; Scheffer et al.,, 2020).

Once the data is prepared, the process moves to segmentation of cell boundaries and
tracing of neuron skeletons (axons and dendrites). This is how the initial 3D shapes of
neurons and their potential connectivity are computationally derived. Historically, manu-
al tracing and segmentation were the only options, but these are prohibitively costly for
large volumes, averaging around 11.2 hours per neuron in early dense reconstructions

(Zheng et al., 2018). Modern approaches heavily rely on automated techniques. Convolu-
tional neural networks, such as U-Nets, can learn from relatively sparse training data to
perform tasks like segmentation and synapse classification. For dense segmentation, a
range of architectures - including U-Nets (Lee et al., 2017), flood-filling networks (Ja-
nuszewski et al.,, 2018), and embedding-based ones (Lee et al,, 2022) - have become
state-of-the-art, achieving high precision in identifying which voxels belong to the same
neuron. While some of these methods can be computationally intensive, ongoing archi-
tectural modifications and algorithmic refinements continue to improve efficiency and
performance across the board.

Despite the capabilities of current automated segmentation algorithms, errors inevitably
occur. These can be “split” errors (a single neuron incorrectly broken into multiple pieces)
or "merge” errors (different neurons incorrectly joined). Correcting these errors requires
proofreading, which currently represents the most significant time and cost bottleneck

in EM-based connectomics, especially for dense reconstruction of complex mammalian
neurons from large-scale datasets like serial section TEM (ssTEM). The human labor in-
volved in correcting such errors is substantial. For instance, proofreading the local axonal
arbor of a single mouse cortical pyramidal neuron - often considered a benchmark for
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the most challenging structures to trace - from a petascale EM volume (e.g., the MI-
CrONS dataset) is estimated to take approximately 40 person-hours (T. Macrina, personal
communication, 2025). This translates to direct proofreading costs of around $400 per
neuron (assuming outsourced proofreader costs of $10/hr), though the experienced cost
for a user engaging a reconstruction service can be higher, in the range of $500-$1000
per neuron. It's important to note these estimates often benchmark against challenging
neuron types like pyramidal cells (which have extensive and fine axonal arbors) and typ-
ically focus on local arbors, with costs potentially varying for simpler neurons or different
reconstruction targets. The quality of the initial imaging and automated reconstruction
also heavily influences proofreading effort; imaging defects, such as missing sections, are
a primary cause of errors that necessitate manual correction.

The scale of this challenge is significant: given current proofreading costs, the total proof-
reading expenditure for an entire mouse brain could reach upwards of $1 billion (Jefferis
et al,, 2023). It's also worth noting that the difficulty of proofreading also varies across
species; for example, researchers report that proofreading mammalian neurons is signifi-
cantly more challenging than for Drosophila, due to factors like larger cell sizes and more
complex morphologies. Reflecting this, only about 2% (e.g., ~1700 neurons as per version
v1300) of the ~100,000 neurons in the 1 mm® MICrONSs dataset has been fully proofread to
date, and similarly, only a small fraction (e.g., ~100 neurons) of the about 16,000 neurons
in the HO1 human temporal lobe dataset has been proofread.

Given these costs, the primary focus for making large-scale EM-based connectomics
feasible is to drastically improve the automation of error correction, effectively augment-
ing and reducing the need for manual proofreading. The field is seeing rapid improve-
ments here. Proofreading efforts have already been significantly augmented by tools that
provide machine-suggested edits, allow users to define regions of interest, and utilize
morphology libraries for comparison, speeding up the process by orders of magnitude in
some contexts (Scheffer et al,, 2020; Plaza, 2016). Experts anticipate that new Al-driven
tools could further reduce proofreading costs for complex cases like mouse pyramidal
neurons to below $100/neuron in the near future. While there hasn't been a recent iso-
metric petascale dataset for direct comparison with MICrONS, improvements in imaging
and reconstruction methods are evident. For example, in a 1x 1x 01 mm?® ssTEM dataset
of mouse hippocampus, a 5-fold improvement in proofreading efficiency for CA3 pyrami-
dal axons has been observed (T. Macrina, personal communication, 2025). This suggests
that the cost of proofreading a cortical pyramidal axon from a new MICrONS-like dataset
could potentially be reduced to around $80.

Indeed, the pace of improvement may be accelerating even faster than such estimates
suggest. A recent pre-print introduced PATHFINDER, an Al system that reportedly
achieves an 84-fold increase in proofreading throughput on high-quality IBEAM-mSEM
imaging data (Januszewski et al., 2025). The method's strength lies in a multi-stage pro-
cess that first generates numerous potential neuron assemblies and then uses a separate
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model with a larger field of view to evaluate their morphological plausibility. Such a leap,
if validated and generalized across different datasets and imaging modalities, would
represent a step-change in the economics of connectomics, moving the field significantly
closer to making whole-brain projects tractable.

This trajectory of rapid improvement suggests the field may be outpacing prior forecasts.
Results like those from PATHFINDER significantly reduce proofreading costs for complex
cases like mouse pyramidal neurons. Besides model architecture improvements, another
important component of developing these more advanced automated proofreading tools
is the generation of more high-quality, human-verified ground truth data. The very act of
proofreading, while currently expensive, produces the training data needed to improve
the next generation of Al models for both initial segmentation and subsequent error cor-
rection. This creates a virtuous cycle where human effort refines Al, which in turn reduces
future human effort.

The overarching goal remains to minimize the human burden in connectome recon-
struction, rendering the mapping of entire brains, including complex mammalian ones,
economically and logistically viable. Continued advancements in Al are poised to dramat-
ically reduce, and perhaps largely automate, the intensive proofreading of EM datasets.
Al's general trajectory provides a strong basis for optimism in this direction, turning the
current high-cost, labor-intensive process into a more manageable one. After all, Al has
approached, achieved, or surpassed human-level performance on many tasks, including
chess (Campbell et al., 2002), Go (Silver et al., 2016), reasoning (OpenAl, 2024), parts of
mathematics (Trinh et al.,, 2024), software development (Schluntz et al., 2024), natural lan-
guage (Brown et al,, 2020), reading comprehension (Rae et al., 2021), and visual reasoning
(OpenAl, 2024). However, even if purely algorithmic solutions for EM data face persistent
challenges in fully eliminating the human proofreading burden, emerging technologies
might nonetheless dramatically reduce or even sidestep entirely the need for exhaustive
proofreading. Indeed, as discussed above, techniques integrating expansion microscopy
with high-plex barcoding aim to assigh unambiguous molecular identities to neurons and
their fragments. This ‘self-proofreading’ capability, where molecular data resolves ambi-
guities intractable from morphology alone, offers a powerful route to sidestep the most
laborious aspects of current EM-centric pipelines. The successful maturation of either Al
for EM workflows or these alternative molecular connectomic techniques thus promises
to enable much more affordable and scalable neuron reconstruction.

It is important to note, however, that creating a precise historical trendline of these
improvements is not currently feasible. Direct comparisons between methods published
over time can be misleading due to various confounders, such as the amount of compute
used, differences in the underlying data quality, and variations in reconstruction targets.
To better track progress, the field would benefit from the systematization and standard-
ization of reporting metrics in the future (e.g., errors per um?, hours of human labor per
um?, FLOPs/um?®). A collection of relevant references can be found in the accompanying
data repository.
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Computational Neuroscience:
Simulating Brains

Building on very early neuronal models like Lapicque's Recherches quantitatives sur
I'excitation electrique des nerfs (Lapicque, 1907), the quest to formally understand and
potentially replicate neural computation gained significant momentum in the mid-20th
century. Foundational theoretical work by McCulloch and Pitts (McCulloch and Pitts;1943)
proposed a mathematical model of simplified neurons, demonstrating how networks of
such units could perform logical computations. Inspired by groundbreaking work such as
Edgar Adrian's on the electrical impulses of neurons (see the Chapter Neural dynamics),
and the detailed biophysical modeling of the action potential by Hodgkin and Huxley
(Hodgkin and Huxley, 1952), the idea of engineering brain-like computation emerged.
Despite the limitations of the era's technology (vacuum tubes and analog circuits), Marvin
Minsky and Dean Edmonds rose to the challenge by constructing the Stochastic Neural
Analog Reinforcement Calculator (SNARC) in 1951. This machine, powered by vacuum
tubes and motorized potentiometers, was a pioneering hardware system designed to em-
body a multi-neuron network capable of learning through reinforcement. Though SNARC
itself was never formally published and remained relatively obscure compared to the
impactful theoretical work of McCulloch and Pitts, the biophysical insights from Hodgkin
and Huxley, or later influential developments like Rosenblatt's Perceptron (Rosenblatt,
1957), it nonetheless demonstrated that even a modest array of physical neuron-like units
could adapt connections to solve tasks, hinting at the potential later realized in artificial
neural networks.

Since then, countless researchers have followed in Minsky and Edmonds' footsteps,
striving to replicate or simulate neural systems in increasingly sophisticated ways. These
simulations vary widely in their scope, from the type of simulation (e.g., spiking vs. rate-
based models) to the number of neurons and synapses, the hardware and software used,
and even the computational cost required to simulate one biological second. Howev-

er, simulating neurons and synapses is only part of the challenge. For brain models to
demonstrate meaningful behavior, they must interact with their environment. This re-
quires embodiment - the ability to encode external stimuli into neural activity and decode
that activity into actions. Embodiment does not necessarily demand a physical robotic
body; it can occur in a virtual environment, where sensory inputs and motor outputs are
simulated alongside the brain model. This process mirrors modern brain-computer inter-
faces or cochlear implants, where information is encoded and decoded into neural inputs
and outputs for specific tasks (e.g., seeing, hearing, memorizing, or speaking). Over time,
this interaction can improve iteratively, benefiting from adaptive changes in either the
emulated brain or the interface.
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To explore these ideas further, we will discuss the computational architectures used to
simulate neuronal networks and the tools that enable these digital neurons to interact
with digital bodies.

Methods of Emulating the Brain

Computational models of neurons and synapses have become indispensable tools for
bridging the gap between partial functional measurements, structural wiring data, and
the richly detailed behavior of living brains. As discussed in prior chapters, exhaustive sin-
gle-neuron resolution recordings are often unattainable in large organisms, and connec-
tomes alone are insufficient to explain circuit function. Neuron models aim to capture how
each cell transforms incoming activity into an output, whether that output is a firing rate,
a spike train, or a graded voltage response. By fitting a model's parameters to observed
neuronal behavior, researchers gain explanatory power and a means to predict how real
cells might respond under new conditions.

Neuron Models

Neuron models aim to capture how electrical or synaptic inputs map onto changes in

a neuron’s membrane potential or spiking. Some frameworks treat neurons as abstract
point units with minimal internal dynamics, whereas others explicitly encode multiple
ion channels, compartments, or morphological details. Different modeling choices imply
different storage (how many state variables must be updated) and computational costs
(how many floating-point operations per millisecond). Simpler models can be integrated
quickly (tens of flops/ms) but may omit key spike features. In contrast, more detailed
schemes can require hundreds to thousands of flops/ms while capturing richer physiol-
ogy. A variety of software frameworks exist to facilitate simulations, including NEURON
(Carnevale and Hines, 2006), NEST (Gewaltig and Diesmann, 2007), Nengo (Benkolay et
al,, 2014), NeuCube (Kasabov et al., 2014), NeuroGrid (Benjamin et al., 2014), GeNN (Yavuz
et al,, 2016), Brian2 (Stimberg et al,, 2019), BMTK (Dai et al., 2020), and many more.

For a tabular comparison of different models and their respective computational demands, see Figure 2
Izhikevich, 2004, Due to copyright constraints, we cannot replicate this image here.
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The leaky integrate-and-fire (LIF) approach is one of the simplest spiking models. It
treats the neuron membrane as a resistor-capacitor circuit, whose membrane potential
u integrates an incoming current while spontaneously decaying (the “leak”) towards

its resting potential; if the membrane potential exceeds the firing threshold, the neuron
spikes. The membrane then resets to a resting voltage. This scheme introduces only one
differential equation (plus a rule for thresholding and reset), and captures fundamental
aspects of spiking behavior. Its computational lightness makes it a staple for large-scale
network simulations, although it omits ion-channel kinetics or dendritic geometry (Skocik
and Long, 2014). Because it tracks only one state variable (u) plus a fixed threshold, LIF
can simulate a neuron with as few as 4-40 floating-point operations per millisecond in
practice (Izhikevich, 2004; Skocik and Long, 2014). This low cost, however, means less
biophysical realism - one trades away phenomena like bursting or variable spike thresh-
olds for speed and minimal memory usage.

An example of a somewhat more general and potentially more biophysically detailed
model is the Izhikevich model, which is a more flexible single-compartment system with
two coupled state variables, typically v for membrane voltage and u for a recovery pro-
cess. Although it lacks direct biophysical details about sodium and potassium currents, it
can reproduce many spike-timing patterns - regular, bursting, chattering - through suit-
able tuning of just four parameters. In practice, Izhikevich neurons are common in spiking
network simulations that benefit from more realistic spiking patterns than LIF can pro-
vide, but do not require the fully biophysical detail of Hodgkin-Huxley (Izhikevich, 2004;
Skocik and Long, 2014). A caveat is that the model's properties can shift as the time step
changes, so care is needed to ensure consistent solutions at different step sizes (Skocik
and Long, 2014). Implementing these two state variables plus four parameters typical-

ly requires on the order of 10-40 flops/ms if run coarsely, but can climb to hundreds or
thousands of flops/ms for higher accuracy or smaller time steps (Izhikevich, 2004; Skocik
and Long, 2014). In return, modelers gain the ability to represent bursting, rebound spikes,
and other complex dynamics that simple LIF neurons cannot capture.

In contrast to these more phenomenological approaches, the Hodgkin-Huxley model
preserves explicit ion-channel kinetics derived originally from voltage-clamp experiments
on the squid giant axon. Its membrane potential is governed by separate sodium, potassi-
um, and leak conductances, each described by gating variables that follow voltage- and
time-dependent transition rates. Although more parameter-intensive, this scheme re-
mains an essential tool for replicating neuronal action potentials’ shapes, thresholds, and
frequency responses. It can also be adapted to incorporate multiple channel subtypes or
altered gating parameters (Skocik and Long, 2014). Beyond single-compartment usage,
the Hodgkin-Huxley formalism commonly appears in multi-compartment neuron models,
where each compartment has its own channel dynamics. Because it tracks four or more
separate state variables and uses multiple exponentials or lookup tables, Hodgkin-Huxley
can require anywhere from a few hundred to well over a thousand flops/ms to achieve
faithful spike timing. This added cost buys far more physiological detail, enabling accurate
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reproduction of real spike shapes and voltage-dependent channel behaviors (Izhikevich,
2004; Skocik and Long, 2014). Further biological complexity can be introduced by using
multiple nonlinear conductances of the Hodgkin-Huxley type modeling a variety of dis-
tinct ion channel families with different ionic species (sodium, potassium, calcium, etc.),
kinetic properties (fast, slow, transient, persistent, etc.), and gating mechanisms (voltage,
ligand, etc.) (Gouwens et al., 2018).

Expanding Hodgkin-Huxley to a multi-compartment framework allows modeling of den-
dritic branches, axonal initial segments, and other spatial structures. These models dis-
cretize the neuron’s geometry and, via the axial-current term derived from classical cable
theory, couple neighbouring segments so that voltage in one piece can influence the next.
Once active conductances are added to each segment, this framework can capture phe-
nomena such as local dendritic Ca®* or NMDA spikes, axonal back-propagation (Rama

et al., 2018), and region-specific channel gradients. While multi-compartment models
certainly can involve dozens or even thousands of compartments (Herz et al. 2006), it is
thought that in many situations only a small handful, for instance, two to five, are needed
to capture soma-dendrite interactions or back-propagating action potentials (Carlsmith
2020). This extra complexity enables phenomena like dendritic coincidence detection,
local dendritic plateau potentials, or intricate backpropagation, which can shape the cell’s
coding properties in ways that single-compartment models cannot capture. Thus, large
compartmental expansions represent a relatively flexible choice: increasing compart-
ments and parameters can boost realism in dendritic computations, at the cost of heavier
per-neuron memory usage and computational flops.

At the finest scale, molecular dynamics (MD) simulates individual atoms to understand
ion channel mechanisms like permeation and gating (Roux, 2002; Alberini et al., 2023;
Guardiani et al., 2022). This offers far better biophysical detail but comes at an extreme
computational cost. This cost limits typical simulations to short timescales, often just
pico- to nanoseconds, extending to only a few microseconds even on high-performance
hardware (Guardiani et al., 2022). This poses a significant challenge, as critical functional
processes like channel gating or ligand binding frequently occur on much longer, milli-
second-to-second timescales (Guardiani et al., 2022). The extreme computational cost
also severely limits the spatial scale feasible for MD simulations. Although there has been
progress thanks to both GPU acceleration (Schoenholz et al, 2019; Doerr et al, 2021) and
to dedicated hardware like the Anton 3 supercomputer (Shaw et al.,, 2021), it currently
seems unrealistic to directly emulate whole brains or even a single neuron at this level of
detail for functionally relevant durations. Consequently, prospective emulations will likely
not employ MD directly to simulate neural activity. Instead, its primary contribution could
be indirect: providing fundamental biophysical data to inform the construction and pa-
rameterization of the more computationally efficient, higher-level neuron models required
for brain-scale simulation.
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The choice of neuron model often reflects a specific project’s target level of biological
abstraction, as different models capture varying degrees of underlying function. Howev-
er, perfect replication down to the atomic level at whole-brain scale will plausibly re-
main infeasible for the foreseeable future. Furthermore, even within the usable range of
models, determining the most computationally efficient approach for a given target level
of accuracy is complex; different studies reach varying conclusions based on specific
benchmarks, accuracy metrics, and implementation choices (Izhikevich, 2004; Skocik and
Long, 2014, Valadez-Godinez et al.,, 2019). Given these uncertainties and the significant
cost associated with simulating unnecessary biological detail (Guardiani et al., 2022),

the field must determine empirically what model complexity is necessary and sufficient

to produce functionally faithful emulations. Resolving this challenge will not just guide
model development but also define data collection and compute resource requirements,
ultimately determining the viability of achieving functionally accurate brain emulations for
any given level of funding.

Synapse Models

Synapses transmit signals between neurons, exhibit short-term dynamics based on
recent activity, and undergo long-term changes during learning. Computational models of
synapses vary from simple rules to detailed biophysical simulations, with different models
emphasizing different aspects of synaptic function.

The simplest models treat each synapse as a fixed weight: presynaptic spikes cause
instantaneous jumps in postsynaptic current. While computationally efficient, this ignores
that real synapses produce responses that rise and decay gradually over time. More real-
istic models generate a transient response for each spike, using either an alpha function
or a difference of exponentials to capture this time course (Roth and van Rossum, 2009).
These waveforms can be applied either to conductance (capturing voltage-depen-

dence but requiring more computation) or directly to current. Although these temporal
response functions - functions that describe how conductance or current evolves - in
their basic form they still abstract away receptor kinetics and potentially ignore voltage
dependence. For this reason, a common extension is to include an NMDA component
with a voltage-dependent Mg?*, typically as a multiplicative factor on the conductance.
Going beyond these relatively simple kinetic schemes, more detailed models use kinetic
schemes tracking multiple receptor states (closed, open, desensitized), while the most
complex simulations also model neurotransmitter diffusion and geometric effects in the
synaptic cleft. However, such detailed diffusion models are typically too computationally
demanding for network simulations and are more commonly used to study single synaps-
es (Destexhe et al., 1998).
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The models described above capture instantaneous synaptic responses, but real syn-
apses show activity-dependent changes over milliseconds to seconds, exhibiting either
depression (decreased effect) or facilitation (increased effect) with repeated activation
(Citri and Malenka, 2007). Two main phenomenological models capture these effects: the
Tsodyks-Markram model treats synapses as having a pool of resources that deplete with
use and recover over time, while Abbott et al's model directly modifies release probabil-
ity (Tsodyks et al., 1998; Abbott et al., 1997). Both models can fit experimental data well
despite their simplicity. More mechanistic variants, however, can track multiple vesicle
pools, presynaptic calcium, and other factors that drive more complex short-term dynam-
ics.

Whereas short-term changes fade within seconds, synapses also undergo longer-lasting
modifications that can persist for hours or days. Such long-term plasticity is thought to
underlie learning and memory, and is typically modeled through Hebbian-like rules. Basic
Hebbian models strengthen synapses when pre- and postsynaptic neurons are active
together, but require stabilizing modifications to prevent runaway growth. Spike-tim-
ing-dependent plasticity (STDP) implements this principle at the level of individual
spikes: synapses strengthen when presynaptic spikes precede postsynaptic ones by
tens of milliseconds and weaken for the reverse order. Still, straightforward STDP rules
cannot capture frequency-dependent or burst-dependent effects. More advanced models
address these nuances through multi-spike interactions (Pfister and Gerstner, 2006) or by
simulating how calcium influx drives synaptic changes (Shouval et al., 2002).

Model Fitting and Data-Driven Approaches

Regardless of a model's complexity, its predictive usefulness depends on how effectively
its parameters are constrained by experimental measurements (Almog and Korngreen,
2016). Historically, most neuron models were constrained by manually tuning a few
parameters (e.g., leak conductance, threshold, or channel densities) to match qualitative
observations, such as a neuron’s typical firing frequency or spike waveform. Modelers
would “hand-fit" the neuronal behavior by trial-and-error until the simulated voltage
traces or firing rates closely resembled a reference dataset. Although workable for simple
scenarios, this approach often fails to generalize and can obscure parameter degenera-
cies - different parameter sets may produce similar outputs without revealing which ones
are biologically correct.

The effort to more rigorously constrain neuron models has been significantly advanced

by detailed electrophysiological recordings, particularly from single neurons in slice
preparations. Building on this, early automated optimization strategies emerged that did
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not require model differentiability. For instance, Druckmann et al. introduced a multi-ob-
jective framework using genetic algorithms to fit conductance-based models by compar-
ing multiple electrophysiological features (e.g., spike rate, action potential shape) from
simulations to the mean and standard deviation of those features in experimental record-
ings (Druckmann et al., 2007). The application of such stochastic optimization techniques,
including genetic algorithms, was made more accessible and standardized by software
packages like BluePyOpt (Van Geit et al., 2016), and these genetic algorithm-based
approaches enabled the systematic generation of large libraries of biophysically detailed
models (Gouwens et al., 2018). More recently, simulation frameworks supporting automat-
ic differentiation have gained traction, also frequently utilizing such detailed electrophys-
iological data. When a model's equations are fully or partially differentiable (as Hod-
gkin-Huxley usually is), gradient descent, similar to training methods underlying modern
Al systems, can be applied to minimize the mismatch between recorded and simulated
activity systematically. This has motivated recent work on differentiable simulators that
can backpropagate errors from final spike outputs or time-varying voltage traces through
an entire model, yielding parameter sets consistent with optical or electrophysiological
data (Deistler et al., 2024). In other cases where discontinuities or non-smoothness arise
(e.g., certain spiking resets), generative methods can learn to map recordings to model
parameters without needing direct backpropagation through each spike event.

For synaptic models, patch-clamp electrophysiology remains the gold standard for
parameter fitting. Single-cell recordings characterize basic synaptic transmission param-
eters like postsynaptic current kinetics and receptor properties, while paired recordings
or optogenetic stimulation reveal presynaptic release probability and short-term plasticity
dynamics. Studying long-term plasticity poses additional challenges, as these changes
unfold over hours to days and involve complex molecular cascades that are difficult to
monitor in living tissue while maintaining sufficient temporal and spatial resolution.

While such approaches benefit from biologically informed model architectures (e.g.,
known ion-channel structure or a leaky-integrate-and-fire scheme), one can also relax
these biophysical priors entirely and rely on purely data-driven methods. Large recurrent
or feedforward neural networks - trained end-to-end on high-dimensional time-series
data - can, in principle, capture dynamics that conventional equations might omit (Wang
et al,, 2025). However, this freedom demands enormous datasets, with recent scaling
analyses suggesting that even for C. elegans, almost an order of magnitude more neural
recordings than currently exist would be required for highly predictive models (Simeon et
al,, 2024). Nonetheless, in smaller, relatively stereotyped organisms where single-neuron
resolution data could be collected in large quantities, purely “black-box"” models with
minimal biophysical assumptions could at least theoretically thrive.
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Structure to function

For larger mammalian brains, though, comprehensive, whole-brain functional data re-
main beyond present technology, making it impractical to learn all parameters directly
from raw observations. Consequently, biophysical priors - such as those embedded in
multi-compartment Hodgkin-Huxley or simpler spiking models - remain crucial to reduce
parameter space and keep simulations biologically plausible. Yet even these more tradi-
tional approaches struggle to scale up to billions of cells; far more extensive measure-
ment capabilities would be required to fit every neuron and synapse.

A promising strategy for bridging the structure-to-function gap is to develop genera-

tive models that link morphological and molecular data to neuronal function. In smaller,
more experimentally tractable organisms such as C. elegans or larval zebrafish, one can
gather both a molecularly annotated connectome and rich functional data (e.g., through
optogenetic perturbations and whole-brain recordings). These models learn how specific
structural attributes translate into core biophysical parameters like channel conductances
or short-term plasticity kinetics by correlating neuronal responses with ultrastructural
features, such as synapse size, receptor distributions, and dendritic geometry. Once vali-
dated in systems with abundant ground-truth data, the same approach can be extended
to large mammalian brains, where whole-brain functional measurements remain infeasi-
ble. In this context, Holler et al stands as a landmark demonstration of how morphological
information alone can inform functional predictions: by combining slice electrophysiol-
ogy with electron microscopy, they showed that synapse size reliably predicts synaptic
strength in mouse somatosensory cortex (Holler et al., 2021). Their work exemplifies how
structural features can serve as powerful proxies for synaptic function. Incorporating
molecular-level data into such pipelines would enable generative frameworks to infer
parameters with even greater precision and scale, providing a viable path toward biolog-
ically grounded simulations of large neural circuits. The necessary condition for that is

an extensive database of slice synaptic electrophysiology data, such as Campagnola et
al, 2022. In this way, integrating high-resolution structural data with targeted functional
measurements can progressively narrow - and ultimately bridge - the gap between brain
structure and brain function. This will require substantial investments in such aligned
datasets.

Embodiment

Brains do not function in isolation. They exist within bodies that provide sensory input
and execute motor commands, creating closed sensorimotor loops that drive behav-
ior and ground identity. This interdependence raises several questions for whole brain
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emulation. Firstly, is embodiment (providing the emulation with sensory inputs and motor
outputs linked to an environment) a prerequisite for faithful emulation? Secondly, if em-
bodiment is necessary, what level of fidelity is required? Is a generic, functionally ade-
quate body sufficient, or must the emulation replicate the original body’s specific physical
characteristics and biochemical properties to preserve personal identity and memories?

Arguments supporting the necessity of embodiment, potentially at high fidelity, often
point first to the consequences of disrupting brain-body interaction. Functional deficits
following sensory or motor deprivation, for instance, are frequently cited to underscore
the requirement for continuous interaction simply to preserve long-term stable brain
function (Sandberg and Bostrom, 2008). Beyond this need for basic interaction, the case
for replicating the specific original body posits that crucial aspects of identity are deeply
intertwined with individual physical characteristics. From this perspective, learned motor
skills and reflexes are often precisely tuned to the unique biomechanics of the original
body (such as limb dimensions, mass distribution, and muscle properties) through adap-
tations occurring in both the brain and spinal cord (Shadmehr and Mussa-lvaldi, 1994).
The concern raised by this view is that transferring an emulation to a generic or different
body might invalidate these learned abilities (Sandberg and Bostrom, 2008). This view-
point further highlights that the brain’s ongoing state and subjective experience are con-
stantly modulated by the body’s hormones, metabolites, and biochemistry more generally.
The implication suggested is that accurately capturing an individual's baseline tempera-
ment, drives, and even subjectively essential aspects of identity requires simulating this
precise internal chemical environment (Sandberg and Bostrom, 2008; McKenzie, 2022).
Thus, the conclusion drawn from this rationale is that while some form of embodiment
might address basic functional viability, a faithful emulation could require reconstructing
the original body with sufficient accuracy (Sandberg and Bostrom, 2008).

Counterarguments emphasize the centrality of the brain for identity. This perspective
often distinguishes between enduring personal identity, rooted in long-term memories
and personality traits presumed encoded within the brain’s structure and dynamics, and
transient physiological states, such as hormonal influences or mood fluctuations, primari-
ly mediated by the rest of the body (McKenzie, 2022). This view supports the observation
that significant body portions, including limbs, organs, and even sensory apparatus (such
as cochleas or retinas), can be functionally replaced or lost without fundamentally erasing
personal identity or core memories (McKenzie, 2022). Further, the topographic mapping
of sensory and motor functions within the brain provides a plausible pathway for interfac-
ing an emulation with sufficiently structured sensory inputs and motor outputs without
the original peripheral structures. Thus, this position suggests that an ‘adequate’ body
simulation needs only to provide a functional feedback loop with the environment, provid-
ed that the brain emulation can adapt (for example, through emulated neuroplasticity).

Encouragingly, the development of the simulation tools needed to investigate these ques-
tions and provide embodiment for WBE is advancing. Dedicated open-source platforms
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like OpenSim from the biomechanics community offer increasingly sophisticated capabil-
ities for detailed musculoskeletal modeling and analysis (Seth et al., 2018). Concurrently,
the field is increasingly leveraging progress in high-performance physics engines such

as MuloCo (Todorov et al., 2012; Vaxenberg et al., 2024; Wang-Chen et al.,, 2024). Initially
driven by robotics and reinforcement learning, these engines prioritize simulation speed
and robust contact handling, while offering features like GPU acceleration and differentia-
bility, both highly valuable for complex embodied systems. Although significant challeng-
es persist, continued progress in these areas holds the promise of enabling researchers
to finally settle these philosophical debates surrounding embodiment empirically.

Verification

The history of technological advancement is often marked by the establishment of
benchmarks. In artificial intelligence, the introduction of ImageNet (Deng et al., 2009) and
its associated ILSVRC competition revolutionized the field by providing a standardized
dataset and objective metrics for comparing models. While these benchmarks did not
settle debates about the nature of “intelligence,’ they enabled measurable progress by
focusing on a tangible proxy: classification accuracy. Similarly, the pursuit of emulating
biological brains requires rigorous methods to evaluate success. The field risks stagnation
without agreed-upon benchmarks, with progress hindered by subjective or incompatible
criteria. Standardized evaluations - even imperfect ones - are crucial for aligning efforts,
tracking advancements, and accelerating discovery, much as ImageNet catalyzed the rise
of deep learning. The central challenge, therefore, is to design benchmarks that capture
measurable aspects of neural or functional fidelity, driving progress until their limitations
necessitate the next leap forward.

A foundational framework for evaluation was proposed in Sandberg and Bostrom's Whole
Brain Emulation Roadmap (Sandberg and Bostrom, 2008). They distinguished between
simulations, which replicate outputs, and emulations, which replicate internal dynamics,
arguing that valid models must preserve the brain’s causal structure - the step-by-step
relationships between neural states. However, practical challenges abound. Even setting
aside the brain's potential chaotic dynamics, minor discrepancies - stemming from noise
in neural recordings (Rupprecht, 2021) or parameter inaccuracies - can compound over
time, causing simulations to diverge from biological trajectories. To address this, Sand-
berg and Bostrom suggested tolerating deviations smaller than the brain’s inherent “noise
floor," the variability observed across repeated biological trials. This pragmatic approach
underpins one of the field's most advanced benchmarks, ZAPBench (Lueckmann et al.,
2024), which evaluates larval zebrafish emulations by predicting 30 seconds of neural
activity from 10 seconds of observed calcium traces (sampled at 1 Hz). Models are scored
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on per-neuron mean absolute error (MAE) across over 70,000 neurons.

An alternative framework shifts the focus from neural activity to behavioral indistinguish-
ability. Zador et al. propose an “embodied Turing test”: if a virtual animal navigates novel
environments, responds to threats, or learns tasks indistinguishably from its biological
counterpart, the emulation succeeds - regardless of internal mismatches (Zador et al.,
2023). This mirrors Turing's original vision, replacing conversation with sensorimotor be-
havior. For instance, an artificial beaver might be tested on dam-building, or a simulated
fruit fly on evasive maneuvers during flight. However, this framework remains compara-
tively underdeveloped, existing more as a conceptual proposal than a fully fleshed-out
benchmark.

The lack of consensus in brain emulation mirrors debates in Al. Just as no single metric

- ImageNet accuracy, chess Elo ratings, or language modeling capability - fully captures
“intelligence,’ no single benchmark will resolve what defines a successful brain emula-
tion. A promising approach, then, is to develop benchmark suites that aggregate diverse
tasks. Initiatives like BIG-Bench (Srivastava et al.,, 2022) and HELM (Liang et al., 2022)
evaluate language models across hundreds of scenarios, recognizing that no individual
task tells the whole story. A parallel and influential effort in computational neuroscience is
Brain-Score.org (Schrimpf et al., 2020), which provides an integrative platform for evalu-
ating how well computational models, particularly those of the visual system, align with a
diverse array of neural and behavioral benchmarks. By scoring models on their ability to
predict brain activity (e.g., in visual cortical areas) and match primate behavioral perfor-
mance, Brain-Score aims to drive progress towards more neurally mechanistic models

of specific intelligent functions. For whole brain emulation, a similar suite might combine
neural activity prediction (as in ZAPBench), embodied behavior tests, causal perturba-
tion experiments (e.g., optogenetic interventions), and new innovative metrics that the
community will develop. Indeed, while benchmark suites and, in general, the portfolio
approach to evaluation discussed here provide a more comprehensive evaluation frame-
work, significant work remains to refine and expand the evaluation landscape. Nonethe-
less, by iteratively improving and expanding benchmarks, the field can advance objective-
ly, grounded in empirical progress rather than abstract debates.

As part of this report, simulation attempts discussed for different organisms were rated
on the following 0-3 point scale across 10 dimensions—the dimensions gesture at the
breadth of sophisticated benchmarks that eventually need to be developed.
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Hardware requirements

Before running a brain emulation, models often need to be fitted or trained to match ex-
perimental data, which can be computationally intensive. The resources required for this
fitting phase depend heavily on numerous factors, including the complexity of the model
being fitted (e.g., number of parameters, compartments), the volume and type of data
used as constraints, and the specific optimization algorithms employed. Due to this high
degree of variability and a lack of standardized benchmarks or comprehensive references
quantifying these costs across different scenarios, providing reliable general estimates

is currently challenging. Therefore, although model fitting is a critical and potentially
resource-intensive step, this report will focus on the computational demands of running
brain emulations, rather than fitting them.

Turning to the demands of running brain emulations, hardware requirements remain
radically uncertain, primarily because we don't yet know what level of biological detail
is necessary for faithful emulation. The Whole Brain Emulation Roadmap (Sandberg and
Bostrom, 2008) highlighted this uncertainty, with computational demands for a human
brain ranging from 10 to 10%° FLOPS: a 15-order-of-magnitude difference. Storage re-
quirements similarly varied from 5x10% to 112x10% bits. Precise resource requirements
will remain elusive until a consensus emerges on what constitutes a sufficient level of
biophysical or functional fidelity.

What is certain is the dramatic advancement in computational power since the roadmap'’s
publication in 2008. Total compute in supercomputers has been rising exponentially for
decades, and supercomputers in the 2020s have been reaching exaflop territory, e.g.,
with El Capitan at more than 1.5 exaflops (Thomas, 2024), with typical supercomputer
costs of $600M (Joseph, 2023). Further, it's worth noting that clusters used for machine
learning applications typically do not appear in TOP500 and that, as a result, the com-
putational capacity of state-of-the-art systems likely exceeds these values. For example,
in 2023 Google demonstrated the ability to train language models on a cluster of 50,944
TPUv5e chips (for a peak performance of over 10 FP16 exaFLOPs) (Ananthamaran, 2023),
and although no public benchmarks have been reported so far, the 100K H100 Colossus
cluster recently assembled by xAl would at least theoretically be capable of over 100
FP16 exaFLOPs, with further plans to roughly double the size of the cluster in the coming
months (Mantel, 2024).

What kind of emulations could such systems run? To provide concrete, though highly
simplified, reference points, we analyze two scenarios: a “simplified lower-bound” scenar-
io, characterized by leaky integrate-and-fire (LIF) neurons and alpha-function synapses,
aiming to capture minimal spiking behavior, and an “illustrative moderately complex”
scenario, characterized by five-compartment Hodgkin-Huxley (HH) neurons and Tso-
dyks-Markram synapses, likely capable of capturing dendritic computation (Carlsmith,

— 156



State of Brain Emulation Report 2025 Part 3: Methods for Brain Emulation

2020) and short-term synaptic plasticity, respectively. It is crucial to emphasize that our
“moderately complex” scenario is still far from the level of detail that might ultimately be
required for full biophysical realism; for instance, highly detailed models could necessi-
tate hundreds of compartments per neuron, or potentially even more complex represen-
tations whose requirements are currently an open research question (Skuhersky, 2024,
personal communication). Such per-neuron or per-synapse complexity increases would
lead to proportionally larger storage and computational demands than estimated here.
Furthermore, it's important to note that neither of our defined scenarios represents a true
upper bound on computational requirements, as both omit other potentially crucial mech-
anisms like neuromodulation and glial interactions. They also do not involve long-term
plasticity mechanisms like STDP and LTP, leading to emulations that are not capable of
forming new memories. Nonetheless, these reference points bracket many modeling ef-
forts today and can offer some insight into the computational requirements of emulations
involving different organisms. We follow Skocik and Long's operation-counting approach
(Skocik and Long, 2014), and extrapolate to whole brain compute requirements (using
whole-brain estimates for mouse and human, though obtaining reliable whole-brain syn-
apse counts can generally be challenging) - compute requirements based on known or
estimated neuron and synapse counts (leaving larval zebrafish aside, for which we could
not identify reliable synapse count estimates).

As part of these simplified estimates for time-based emulation compute requirements,
assuming FP16 operations, we find that both C. elegans and the fly brain are within reach
of modern GPUs, that the mouse brain would likely require a relatively small multi-GPU
cluster, and that emulating the human brain would require a large-scale cluster - indeed,
Lu et al. recently used 14,000 GPUs for their human-scale model (Lu et al., 2024) - though
not beyond the capabilities of frontier systems like xAl's Colossus. It's important to em-
phasize, however, the limitations of these estimates. These FLOPS estimates represent
the theoretical computational load of the core model equations. Actual performance on
hardware will also depend on factors such as software implementation efficiency, mem-
ory bandwidth limitations, interconnect speeds, and hardware utilization, which can lead
to practical simulation times differing from what raw FLOPS might suggest. Thus, these
estimates neglect other potentially important mechanisms by focusing solely on neuron
and synapse models. Further, even within this modeling paradigm, it's worth noting that
the literature on computational requirements for synapse models is far less extensive
than for neuron models, despite synapses often dominating computational costs. Final-
ly, these estimates do not consider numerous other relevant factors in actual modeling
efforts, including the specific simulation software used, the achieved hardware utilization
rate, and more.
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Estimated Compute Requirements for Time-Based Brain Emulation

The computational power (FP16 FLOPS) required for time-based whole-brain emulations across four organisms
(orange) compared with the peak performance of reference hardware (grey). The y-axis is on a logarithmic scale.
Error bars reflect the range of requirements based on varying assumptions about the underlying biophysical model
complexity (e.g. from simple point neurons to multi-compartment models). Calculations and underlying data for this

figure are available in the linked data repository.
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Indeed, one reason why it can be hard to achieve high hardware utilization rates is stor-
age requirements. The storage requirements estimated here refer to the memory needed
to hold the dynamic state variables of the neurons and synapses during active simulation,
typically residing in system RAM or the High Bandwidth Memory (HBM) of accelerators
like GPUs. Storage requirements can exceed the high bandwidth memory of the system,
and even when memory itself is sufficient, the interconnect between different chips can
be a bottleneck. Over the past 30 years, the rate of improvement in processing power
has far exceeded the rate of improvement in memory and interconnect development.
Peak hardware FLOPS have improved by roughly 3x every 2 years, compared to only 1.6x
and 1.4x for memory and interconnect bandwidth, respectively, leading to the so-called
memory wall (Gholami et al,, 2024; An et al., 2024). Memory capacity has also under-
gone a similar trend: today's El Capitan boasts 1.74 exaFLOPS and over 5.4 petabytes

of HBM3 memory (Thomas, 2024); NEC's Earth Simulator boasted 41 teraFLOPS and 10
terabytes of DRAM memory in 2004 (Sato, 2004); representing an approximately 42,400-
fold increase in processing power and just a 540-fold increase in memory capacity. Like
many other workloads, computational modeling of brain tissue has been affected by this
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trend: a 2014 study identified interconnect bandwidth as key bottleneck for spiking neural
network simulations (Kunkel et al.,, 2014) and a recent in-depth analysis found memory
bandwidth and interconnect latency to represent key bottlenecks for all types of neuron
simulations studied, from point neurons with current-based synapses to multicompart-
mental models with conductance-based synapses, particularly at high fan-ins and neuron
counts (Cremonesi et al., 2020).

IEIMEE] Divergent Growth Rates of Compute, Memory, and Interconnect Performance

Exponential growth trends for hardware performance over the past two decades, plotting peak computational
throughput (FLOPS, black), memory bandwidth (DRAM BW, green), and interconnect bandwidth (Interconnect BW,
purple). The y-axis is logarithmic, with performance values normalized to the peak FLOPS of the R10000 processor.
The steeper slope for FLOPS (3.0x improvement every two years) compared to memory (1.6x) and interconnect (1.4x)
bandwidth illustrates the growing gap between processing power and data access speeds, a phenomenon known as
the “memory wall”’

HW FLOPS: 60000x / 20 yrs (3.0x/2yrs) B200
DRAM BW: 100x / 20 yrs (1.6x/2yrs)
Interconnect BW:  30x /20 yrs (1.4x/2yrs)

[ ]
1000000 Gaudi2

10000 1 GTX 580
[ ]

HBM 3 J
(]
100 4 Penti HBM 2
HiM ° °
GDDRS5 )
° NVLink 4.0
GDDR4 . PCle 5.0
L] ® NVLink 1.0
1 o PCle 3.0
PCle 2.0
0.01 +rrTT T T T T T T T T T T
2005 2008 2011 2014 2017 2020 2023 2026

State of Brain Emulation Report 2025



State of Brain Emulation Report 2025 Part 3: Methods for Brain Emulation =

Similarly to the compute requirements discussed above, our simplified estimates suggest
that, assuming 32-bit state variables, C. elegans and Drosophila brain emulations would
fit comfortably within a modern GPU'’s available HBM. For an emulation of a mouse brain
in our “illustrative moderately complex” scenario (5-compartment HH), it would likely re-
quire a somewhat small cluster, and an emulation of the human brain in the same scenar-
io would require a large-scale cluster close in capability to ones such as xAl's Colossus.
The precise storage per element for more complex models will vary based on the specific
ion channels and state variables included. These estimates, however, make the import-
ant assumption that interconnects do not become the bottleneck, an assumption that
may not hold in practice. Data movement and latency bottlenecks are now the primary
constraint in training frontier Al systems, the main application of today’s largest GPU/
TPU clusters (Erdil and Schneider-Joseph, 2024). It's also worth noting the stark contrast
in software maturity: considerable effort has gone into developing strategies for efficient
distributed training of large-scale Al systems over the past decade, while computational
neuroscience has only recently begun to leverage GPUs and TPUs at scale. Indeed, while
a few pioneering efforts involved large-scale GPU clusters, most computational neurosci-
ence research remains focused on single-GPU or small-cluster implementations where
interconnect bottlenecks are less prominent.

IEIMET) Estimated Memory Requirements for Brain Emulation

The runtime memory (Bytes) required to store the state of whole-brain emulations across four organisms (light blue)
compared with the memory capacity of reference hardware (grey). The y-axis is on a logarithmic scale. Error bars
reflect the range of requirements based on the same varying assumptions about biophysical model complexity used
for compute estimates. Calculations and underlying data for this figure are available in the linked data repository.
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Interconnects can become the bottleneck partly because time-based simulations re-
quire constant updates for all neurons and synapses, typically every 0.1 milliseconds. An
event-driven modeling paradigm can lower bandwidth demands by instead only requir-
ing such computations when spikes and synaptic events happen, thus also decreasing
compute requirements by a couple orders of magnitude. This is typical of neuromorphic
systems like IBM's TrueNorth in 2014 (implementing 1 million neurons and 256 million
synapses per chip) (Akopyan et al., 2015), Intel’s Loihi platforms (Davies et al., 2018,
Orchard et al.,, 2021) and more recent developments like the Hala Point system at San-
dia National Laboratories, with over 115 billion neurons and 128 billion synapses (Intel,
2024). Support for some event-driven operations is also present in some GPU/TPU-based
frameworks like BrainPy (Wang et al., 2023), though this is still far from common. Should
event-driven modeling be more widely adopted, not every model would necessarily see
significant benefits. Indeed, some, like Hodgkin-Huxley neurons, can be difficult to adapt
due to their continuous dynamics.

Furthermore, the efficiency gains of event-driven simulations can diminish in large,
densely connected networks with high overall spike rates. In such regimes, the overhead
of managing a vast number of concurrent events might negate the computational savings
from only updating active elements. Nonetheless, as processing of synaptic events dom-
inates computational requirements, the computational cost of emulating an entire brain
can still decrease by a few orders of magnitude.

Estimated Compute Requirements for Event-Driven Brain Emulation

The computational power (FP16 FLOPS) required for the same whole-brain emulations, but implemented using an
event-driven paradigm (green bars), compared with reference hardware (grey). The y-axis is on a logarithmic scale.
Error bars reflect the range of requirements based on the same varying assumptions about biophysical model
complexity used for the other estimates. Calculations and underlying data for this figure are available in the linked
data repository.
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This can be seen in our estimates. Even in the more complex scenario, where the 5-com-
partment Hodgkin-Huxley neurons continue to be time-based, overall computational
requirements still decrease by several orders of magnitude for all organisms considered,
as a result of the more efficient event-driven modeling of synapses. It is essential, howev-
er, to contextualize these event-driven estimates within the current framework landscape.
While GPUs and TPUs are now starting to be adopted by the computational neuroscience
research community, enabling significant speedups over traditional CPU-based platforms
like NEURON, and powering new frameworks such as ARBOR (Akar et al., 2019), BrainPy
(Wang et al., 2023) and Jaxley (Deistler et al., 2024), their adoption is a relatively recent
phenomenon, and remains limited. Further, event-driven primitives continue to be mostly
lacking. Nevertheless, these trends suggest that, with sufficient research and develop-
ment, even real-time emulation of the human brain may be feasible in the not-too-distant
future, although likely requiring, at least initially, large-scale clusters.
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Glossary

A-C

Action Potential: A rapid rise and
fall in voltage across a cellular
membrane; the fundamental unit of
communication for spiking neurons.

Barcoding (Protein/DNA): A
technique (e.g., Brainbow, Tetbow,
PRISM) used to assign unique
molecular identifiers to individual
neurons. This allows for the
identification of disconnected
neuron fragments in connectomics,
potentially bypassing the need for
perfect morphological tracing.

BOLD Signal (Blood Oxygen Level
Dependent): The signal measured by
fMRI, reflecting changes in blood flow
and oxygenation that serve as a slow,
indirect proxy for neural activity.

Calcium Imaging: An optical
recording technique that uses
fluorescent indicators (like GCaMP)
to visualize the influx of calcium ions
into a neuron, serving as a proxy for
neuronal spiking activity. It allows
for simultaneous recording of large
populations but has lower temporal
resolution than electrophysiology.

Connectome: The comprehensive
map of neural connections
(synapses) within a brain or nervous
system.

Connectomics: The field of study
focused on reconstructing the
wiring diagram of the brain, typically
using Electron Microscopy (EM) or
Expansion Microscopy (ExM).

D-F

Dense Reconstruction: The analysis
and mapping of all neurons and their
connections within a specific volume
of tissue, as opposed to sparse
reconstruction which maps only a
subset.

Effectome: A quantitative map

of causal influence between
neurons, derived from perturbation
experiments (like optogenetics)
rather than just anatomical
connections.

Electron Microscopy (EM): A
microscopy technique using electron
beams to achieve nanometer-scale
resolution, essential for visualizing
synapses. Variations include TEM
(Transmission), SEM (Scanning), and
FIB-SEM (Focused lon Beam).

Electrophysiology: The branch of
neuroscience that measures the
electrical activity of neurons, ranging
from single-cell Patch Clamps to
large-scale Microelectrode Arrays
(MEAs) like Neuropixels.

Embodiment: The integration of a
brain model with a physical (robot)
or virtual body that provides sensory
input and executes motor commands,
creating a closed sensorimotor loop.

Emulation: A computational model
that matches a target system’s
outputs by implementing the same
internal causal dynamics at a chosen
level of biophysical detail (distinct
from Simulation).

Expansion Microscopy (ExM): A
technique that physically expands
biological tissue using swellable
hydrogels to allow sub-diffraction
limit features (like synapses) to
be imaged using standard light
microscopy.

fMRI (Functional Magnetic
Resonance Imaging): A non-invasive
imaging technique that measures
brain activity by detecting changes
associated with blood flow.

G-L

Gap Junction: A specialized
intercellular connection that allows
various molecules, ions, and electrical
impulses to pass directly between
the cytoplasm of two cells (electrical
synapse), often difficult to resolve in
standard connectomics.

GCaMP: A family of genetically
encoded calcium indicators (GECls)
derived from green fluorescent
protein (GFP) and calmodulin, used
to visualize neural activity.

GEVI (Genetically Encoded Voltage
Indicator): Fluorescent proteins
engineered to sense changes

in membrane potential directly,
offering faster temporal resolution
than calcium imaging but currently
suffering from lower signal-to-noise
ratios.

Hodgkin-Huxley Model: A
biophysically detailed mathematical
model that describes how action
potentials in neurons are initiated and
propagated using explicit ion-channel
kinetics.

In silico: Performed on a computer or
via computer simulation.

Leaky Integrate-and-Fire (LIF): A
simplified neuron model that treats
the membrane as a resistor-capacitor
circuit which spikes when a threshold
is reached. It is computationally
efficient but lacks detailed
biophysical dynamics.

M-P

Microelectrode Array (MEA):
Devices containing multiple
microscopic electrodes (e.g.,
Neuropixels) used to record
neural signals from many neurons
simultaneously.

Minimal Brain Emulation: A
theoretical baseline defined in this
report describing the minimum
properties necessary for a model to
be considered an emulation. Criteria
include: >95% neuron coverage,
accurate synaptic connectome, cell
type diversity, and consistent spiking
activity scale.

Neuromodulators: Chemical
messengers (e.g., dopamine,
serotonin, neuropeptides) that
regulate diverse populations of
neurons over slower timescales than
neurotransmitters, often diffusing
through the extracellular space
(volume transmission).

Neuropixels: A state-of-the-art
high-density electrophysiology probe
capable of recording hundreds to
thousands of individual neurons
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simultaneously with millisecond
precision.

Optogenetics: A biological technique
that involves the use of light to control
cells in living tissue, typically neurons,
that have been genetically modified
to express light-sensitive ion channels
(opsins). Used for perturbation
experiments.

Patch Clamp: An electrophysiological
technique that allows the study of
single or multiple ion channels in cells
by sealing a glass electrode to the
cell membrane. It is the gold standard
for measuring single-cell electrical
properties.

Perturbation: The deliberate
manipulation of neural activity (e.g.,
via optogenetics) to establish causal
relationships between neurons, as
opposed to passive observation.

Photobleaching: The loss of
fluorescence in a sample due to
prolonged light exposure, limiting the
duration of optical recording sessions.

Point Neuron: A simplified
computational model where the spatial
geometry of the neuron (dendrites,
axon) is ignored, and the cell is treated
as a single point in space.

Proofreading: The manual or semi-
automated correction of errors (splits
and merges) in the algorithmic neuron
tracing of connectomics data.

S-Z.

Segmentation: The computational
process of identifying and tracing the
boundaries of neurons and organelles
within raw microscopy image data.

Simulation: A model that matches a
target system's outputs (given the same
inputs) without necessarily reproducing
the internal causal dynamics or
biophysical details (distinct from
Emulation).

Synchrotron X-ray Tomography: A
technique using high-energy X-rays
to visualize large tissue volumes at
high speeds. While currently limited in
resolution compared to EM, it allows
for non-destructive imaging of whole
brains.

Transcriptomics: The study of the
transcriptome (the complete set of
RNA transcripts), often used to classify
neurons into specific cell types based
on gene expression.

Two-Photon Microscopy: An optical
imaging technique that uses infrared
light to excite fluorescent dyes. It
penetrates deeper into tissue and
causes less damage than single-photon
microscopy, making it standard for in
vivo recording.

Voltage Imaging: An optical method
to measure the changing electrical
potential of a cell membrane directly,
capable of resolving individual spikes
and sub-threshold events.

Volume Electron Microscopy (VEM):

A set of EM techniques (like FIB-SEM
or SBF-SEM) designed to capture 3D
volumes of tissue rather than single 2D
slices.

Whole Brain (Report Definition): A
quantitative threshold defined in this
report as a model incorporating at least
95% of neurons and at least 95% of the
brain volume for a respective organism.
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